Lecture 31 outline:

10/30/2020

- Only 13 lectures left! Ch 5 next week
- HW 8 due 11/11, HW 9 due 11/20.
 - Application Insulated wire Questions:
 - What about polarizability tensor?
 - Why does torque on a dipole matter?
 - What equations apply in all circumstances?
 - How do these things get measured?
 - How do bound charges get into material. They bound!
 - Why aren't bound charges different from other charges?
 - Curl of polarization isn't zero ... WHAT?
 - Isn't this just like magnetism? (Edelman)

Application: Charged wire with plastic insulator

What about polarizability tensor?

$$\vec{p} = \begin{vmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{vmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$

Why does torque on a dipole matter?

Answer 1: High dielectric materials

Answer 2: Motors!

Range of applicability of equations.

$$\vec{P} = N \alpha \vec{E}$$

True for gasses. Need "Clausius-Mossoti" for solids.

True for linear isotropic dielectrics

$$\vec{P} \stackrel{\text{def}}{=} \vec{N} \vec{p}$$

$$\vec{p} = \alpha \vec{E}$$

$$\vec{P} \stackrel{\text{def}}{=} \epsilon_0 \chi_E \vec{E}$$

$$\epsilon \stackrel{\text{def}}{=} \epsilon_0 (1 + \chi_E)$$

$$\epsilon_{\rm r} \stackrel{\text{def}}{=} (1 + \chi_{\rm E})$$

$$\vec{D} = \vec{\epsilon} \vec{E} \quad \vec{D} = \vec{\epsilon}_r \vec{\epsilon}_0 \vec{E}$$

$$\vec{N} = \vec{p} \times \vec{E}$$

$$\vec{\mathbf{F}} = (\vec{\mathbf{p}} \cdot \nabla) \vec{\mathbf{E}}$$

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$$

$$\sigma_{\rm B} = \vec{P} \cdot \hat{n}$$

$$\rho_{\rm B} = -\nabla \cdot \vec{P}$$

$$\nabla \cdot \vec{\mathbf{D}} = \rho_{\text{Free}}$$

True in all cases.

Q: How does dielectric constant get measured?

A: Slap some electrode on it and build a capacitor out of it.

Q: How do bound charges get inside the dielectric?

A: They are already there, waiting for a spatially varying field.

