Lecture 30 outline:

10/28/2020

- HW06 ... last call ...
- HW07 change to Friday (10/30)
- Electric fields in matter
  - Gauss's law with free and bound charge
  - Electric displacement
    - Relative permittivity
    - Application Parallel plate capacitor
    - Application Insulated wire

## Electric Fields in Dielectrics

$$\vec{p} = \alpha \vec{E}$$

Alpha is called "polarizability"

$$\vec{P} = N \vec{p} = N \alpha \vec{E}$$

Polarization is dipole moment/volume

$$\vec{P} \stackrel{\text{\tiny def}}{=} \varepsilon_0 \, \chi_E \, \vec{E}$$

Chi is called "electric susceptibility"

$$\epsilon \stackrel{\text{\tiny def}}{=} \epsilon_0 (1 + \chi_E)$$

Epsilon is called "permittivity"

$$\varepsilon_r \!\!\stackrel{\text{\tiny def}}{=}\!\! \left(1\!+\!\chi_E\right)$$

Epsilon\_r is called "relative permittivity" or "dielectric constant"

$$\vec{D} = \epsilon \vec{E}$$

 $\vec{D} = \epsilon_r \epsilon_0 \vec{E}$ 

D is "Electric displacement"

## Gauss with Free and Bound Charge

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\rho = \rho_{Free} + \rho_{Bound}$$

$$\rho_{\text{Bound}} = -\nabla \cdot \vec{P}$$

$$\epsilon_0 \nabla \cdot \vec{E} = \rho_F - \nabla \cdot \vec{P}$$

$$\nabla \cdot \epsilon_0 \vec{E} = \rho_F - \nabla \cdot \vec{P}$$

$$\nabla \cdot (\epsilon_0 \vec{E} + \vec{P}) = \rho_F$$

$$(\epsilon_0 \vec{E} + \vec{P}) \stackrel{\text{def}}{=} \vec{D}$$

$$\nabla \cdot \vec{D} = \rho_{\rm F}$$

$$\int \vec{D} \cdot d\vec{A} = Q_{Free}$$



Application: Parallel plate capacitor with dielectric

Application: Charged wire with plastic insulator

"A Deceptive Parallel"