Lecture 15 outline:

- Exam protocol
- Laplace's Equation
 - Extrema are at edges (boundaries)
 - Every point has the average value of its neighborhood
- Relaxation method
- First Uniqueness Theorem
 - If you specify the potential on any set of conductors and Laplace is solved between, there is exactly one solution.
- Method of Images
- Second Uniqueness Theorem
 - If you specify the charge on any set of conductors and Laplace is solved between, there is exactly one solution.

Laplace's Equation (General Properties)

- Extrema are at edges (boundaries)
- Every point has the average value of its neighborhood

Laplace's Equation (3D)

- Every point has the average value of its neighborhood
- Is this surprising? Imagine a charge Q 1 meter from a sphere with R=3.

$$V_{AVG}(\vec{r}) \stackrel{\text{def}}{=} \frac{1}{4\pi R^2} \int V(R,\theta,\phi) da$$

Proof: Every point has the average value of its neighborhood

$$V_{AVG}(\vec{r}) \stackrel{\text{def}}{=} \frac{1}{4\pi R^2} \int V(R,\theta,\phi) da$$

Prove...
$$\frac{dV_{AVG}}{dR} = 0 \rightarrow V_{AVG}$$
 indep of R

Relaxation Method

- Works in 2D or 3D (or 4D)
- Specify V at boundaries
- Guess V elsewhere.
- Replace V by the average of V.
- Repeat until converged.

When V is properly calculated then

$$V(i,j) = \frac{1}{4} [V(i+1,j) + V(i-1,j) + V(i,j+1) + V(i,j-1)]$$

Potential and field of a wire in a constant field

First Uniqueness Theorem

• If you have found a solution to Laplace or Poisson for arbitrary **potentials** on a set of conductors, it is the ONLY solution.

Second Uniqueness Theorem

• If you have found a solution to Laplace or Poisson for arbitrary **charges** on a set of conductors, it is the ONLY

solution.

Method of Images

• Given a charge Q (or set Q_i) above a plane conductor the field above the conductor will be the same as if there were an equal and opposite charge below the conductor

Method of Images