Lecture 15 outline:
* Exam protocol
*Laplace’s Equation

* Extrema are at edges (boundaries)
* Every point has the average value of its neighborhood

*Relaxation method
*First Uniqueness Theorem

* If you specify the potential on any set of conductors and
Laplace is solved between, there is exactly one solution.

*Method of Images
*Second Uniqueness Theorem

* If you specity the charge on any set of conductors and
Laplace is solved between, there is exactly one solution.



Laplace’s Equation (General Properties)

* Extrema are at edges (boundaries)
* Every point has the average value of its neighborhood



Laplace’s Equation (3D)
* Every point has the average value of its neighborhood

* Is this surprising? Imagine a charge Q 1 meter from a
sphere with R=3.
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Proof: Every point has the average value of its neighborhood
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Relaxation Method

* Works in 2D or 3D (or 4D)

* Specify V at boundaries

* Guess V elsewhere.

* Replace V by the average of V.

* Repeat until converged.

When V is properly calculated then

V(i,j):%[V(i+1,j)+V(i—l,j)+V(i,j+1)+V(i,j—1)]
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- A = zeros{(1l0,10):
- A(l,:) 1:

- AR{l0,:)=1:

- Aold
- Anew
- ke=1:
- surf (A)

== 0
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- while {(abs{hAold-Anew) > 0.01)

_ nold = A(5,5);

for i = 2:9

- for 7 = 2:9

- A(i,j) = (A(i-1,])+A(i+l,j)+A(i,]=-1)+A (i, ]+1))/4;
- end

- end

- Anew = A[5,5);
- figure

- surf (A)

- end

oD WD G =] O L e e Bl P D WS G sad O LN e L B
|

g¥surf(A)




Potential and field of a wire in a constant field

Potential for a vertical plasma channel Efield magnitude for developing lightning leader
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First Uniqueness Theorem

* If you have found a solution to Laplace or Poisson for

arbitrary potentials on a set of conductors, it is the
ONLY solution.
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Second Uniqueness Theorem

* If you have found a solution to Laplace or Poisson for
arbitrary charges on a set of conductors, it is the ONLY

solution.




Method of Images

* Given a charge Q (or set Q_i) above a plane conductor
the field above the conductor will be the same as if there
were an equal and opposite charge below the conductor

10



Method of Images
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