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Fig. 2. Comparison of the fractional charge/length and the third root of
the curvature for an infinite cylinder whose cross section is described by
Eq. (13) with d = 1 and e = 4. The matrix dimension for the calculation
of fis n = 150 and the XK' function has been scaled to match the maxi-
mum of f.

Thus, as a function of 8 at fixed d, f« K'/*, which is remi-
niscent of the results of Liu.*

Such a relation between charge density and curvature
cannot always be true.>® One should see Refs. 5 and 6 for
general arguments. Here, we end with a counterexample
based on using for the cross section of the cylinder the gen-
eralized ellipse,

r(8) =d /(cos® @+ d°sin¢ 0) e, (13)

For the specific choices of d = 1 and e = 4, a plot of both f
and a scaled K '”* are shown in Fig. 2. There is reasonable
agreement near the maximum, but K vanishes at
6 = 0,77/2, while fis everywhere finite. We found similar
results for larger choices of d and e.
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A recent paper by Liu' on the relationship between the
charge density of an electrically charged conductor and its
curvature has generated further investigations and discus-
sions.?*> Whilst it is healthy that this paper has provoked
the thoughts of others (including ourselves) there are some
lessons for all of us.

Liu' demonstrates the relation between the charge den-
sity of a charged ellipsoid, paraboloid, and hyperboloid of
revolution, and the fourth root of the Gaussian curvature
of the conductor. He then suggests that perhaps this rela-
tionship between charge density and curvature holds for
arbitrary smooth conductors. In fact, the relationship
between the charge density of a charged ellipsoid and the
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Gaussian curvature has been “known” for some time. In
his book, Kellogg* calculates the charge density of an iso-
lated metallic ellipsoid, and in a footnote observes that this
is proportional to the fourth root of the Gaussian curva-
ture. McAllister® subsequently observed that Liu’s result
holds for an isolated conductor in the shape of any coordi-
nate surface for general ellipsoidal or paraboloidal coordi-
nates.

Heuristic arguments as to why the charge density is ex-
pected to be large where “the curvature” is large are to be
found in nearly every text on electrostatics. However, we
did find one text® that warns us that the relation is not
exact, citing a paper by Price and Crowley.” In this paper
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the authors point out the ambiguity of the expression “the
curvature” of the conductor, and then demonstrate that
there is no relationship between the charge density and any
function of the local curvature. They provide some inter-
esting numerical examples. Thus, as is perhaps all too often
the case, a greater awareness of the existing literature
would have saved a number of people (including our-
selves) some time.

In view of the above can there possibly be anything left to
say on the subject? We would like to add just a little per-
spective on this topic. As was shown in Ref. 7 there can be
no exact relationship between the charge density of a con-
ductor and its local curvature. However, the title chosen by
these authors belies the proven usefulness of such an ap-
proximate relationship. If we believe that the curvature of
the conductor is a useful guide as to the approximate
charge distribution (at least in many cases) then how do
we argue this? We present our attempt. This involves ex-
pressing the charge density as an integral, along a field line,
of the mean curvatures of a family of equipotentials sur-
rounding the conductor.

We first give a brief introduction to the geometry of sur-
faces in Euclidean three-space. Let x(¢) be a parametrized
curvein R *. Then at the point p = x(¢,) the tangent vector
is X(2,). So x(?) is a vector field defined along the curve.
Suppose that v = x(¢,) and that X is any vector field de-
fined along the curve (at least). Then the derivative of X
along v is defined by differentiating X along the curve x(¢):

VvX=iX(x(t))(to). (D
dt

It follows that V, X does not depend on the details of the
curve x(t), requiring only that X(#,) = v. Although we are
here using the standard notation of differential geometry,
another notation for V, is common in physics,

V,=(vV). (2)

As a special case, the derivative of the tangent field (or
“velocity” field) x(¢) along the curve x(¢) produces the
“acceleration” x(¢).

Suppose now that x(¢) is a parametrized curve on the
surface 2. Then x(#) is tangent to the surface. Conversely,
ifvis any vector at a point p on = then v is tangent to = only
if v = x(1,) for some curve x(¢) on £ with x(#,) = p. The
three-dimensional space of vectors at any point p of = may
be decomposed into a two-dimensional subspace of vectors
tangent to X, and a one-dimensional subspace of normals.
A geodesic is a curve in the surface whose acceleration is
everywhere normal to the surface. Thus a geodesic has zero
tangential acceleration, and in this way generalizes the
property a straight line in R " has of being a parametrized
curve with zero acceleration. If v is tangent to = at p then
there is a unique geodesic x(¢) such that x(0) =p and
x(0) = v. This geodesic is said to “start” at p with initial
“velocity” v.

To study the ‘““shape” of the surface X we introduce a
unit normal field n, defined at each point of 2. Since its
length is constant the derivative of n along any vector v
tangent to X must be orthogonal to n, that is, tangent to =.
So if S is defined by

Sv= —V.n, 3)

then S is a linear transformation on the two-dimensional
space of vectors tangent to . (Notice that S depends on a
choice of orientation for 3: We must choose one of the two
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possible unit normals at each point.) The operator S is
called the shape operator (or Weingarten map).

To see how S measures the “shape” of = we take a geo-
desic x(¢) starting at p with initial velocity v. Since x is a
curve in 2 then x-n = 0, and the derivative of this expres-
sion along v gives

V,xn= —xV n.
But v = x(0) and so we can use (3) to write this as
%(0)on = v-Sv . 4)

Since x(¢) is a geodesic, its acceleration is everywhere nor-
mal, and so at any point S gives the acceleration of the
surface geodesic for any given starting *“‘velocity.” The ac-
celerations of the geodesics, which are “straight” with re-
spect to the surface geometry, measure their departure
from R * straightness. In this way, S measures the shape of
the surface 2. At any point p of 2, the two eigenvectors of §
define the principal curvature directions. The Gaussian
curvature at p is the product of the eigenvalues, with the
mean curvature function A being the average of them.
Whilst it is not obvious from the above, the Gaussian cur-
vature, unlike the mean curvature, is intrinsic; that is, it
depends only on the geometry of the surface and not on the
way that the surface is imbedded in R *. Thus a cylinder,
whose local geometry is the same as that of a flat piece of
paper, has vanishing Gaussian curvature but nonvanishing
mean curvature. With these conventions, an eigenvector of
S has positive eigenvalue if the geodesic in its direction has
R * acceleration toward the normal n. Thus, for example, if
we choose the outward normal for a sphere, the eigenval-
ues, and hence A, are negative. If 7 is the radius of the
sphere, then both eigenvalues are — 1/7, and so A is in this
case a constant. A nice introduction to the geometry of
surfaces is given by Thorpe.?

Consider an isolated smooth charged conductor. Then
(if there are no isolated points at which the electric field
vanishes) the conductor will be surrounded by a family of
equipotential surfaces. Let 2 be the ¢ = ¢ equipotential.
Since each point in the exterior region lies on exactly one
equipotential, a smooth function A may be defined to have
the value at any point of the mean curvature of the equipo-
tential at that point. Let n be a unit vector in the direction of
the electric field E, which we will write as E = En. Thus E
is the norm of the field, which will give the charge density
at the surface. At any point outside the conductor we may
pick an orthornormal basis {n,e,,e,} where e, and e, are
eigenvectors of the shape operator at that point. We may
use this adapted orthonormal basis to write out the vacuum
Mazxwell equation V-E = 0:

2
VE=(V,E)n+ Y (V.E),.
i=1
Now
(V,E)n= (V,E)n'n+ E(V_ n)n
=V, E
since n is a unit vector.

Also
V.E= (VeiE)n + E(Vein)

= (V, E)n — ESe,
= (V. E)n—A,Fe, ,
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since e; is an eigenvector of S with eigenvalue A,. Thus
(V,E):¢;, = —A,E and so V-E =V, E — 2Eh, where the
mean curvature function # is half the sum of the eigenval-
ues. So the vacuum equation gives

V,E=2Eh. (5)

Establishing this equation is problem 1.11 in Jackson.’
McAllister and Pederson'® believe that this equation
should be named after Green. Although this equation in-
volves the mean curvature it has apparently'' been known
for a long time that this equation cannot be used to give an
exact relation between the charge density and the conduc-
tor curvature.'? The equation has been used as the basis for
an approximation scheme for the electric field surrounding
an isolated conductor.'>'

If the electrostatic potential ¢ is defined in the usual way
by E = — V¢ then we may coordinatize the exterior region
with {a, 5,4}, where {a, B} are any (local) coordinates
for the conductor. Using these coordinates the above be-
comes

9E _
¢
For any point P let C be the integral curve of E (the field

line) starting at P and extending out to infinity. Then we
can write

E(P) =f2h dé . (7
C

—2h. (6)

The above relates the surface charge density ¢ to the mean
curvature, as o(P) = €,E(P): but not just the mean curva-
ture of the conductor, rather the mean curvature of all the
equipotentials at points pierced by the field line from P.
The shape of these equipotentials is of course determined
by the total charge distribution on the conductor, and not
just on its local geometry. Equation (7) does not give a
useful way of finding the charge density on the surface. To
evaluate the right-hand side we would need to know expli-
citly the potential in order to find 4, and if we know ¢ then
the problem is solved. However, can we use (7) to suggest a
relation between surface charge density and surface curva-
ture? Suppose that Pis a point on the conductor for which A
is a maximum, and in addition let us suppose that the field
line from P pierces each equipotential where its mean cur-

vature is a maximum (we know of course that in general
this latter supposition will not be true). Then, in this case,
(7) shows that indeed the charge density will be a maxi-
mum at P. Whereas the futility of searching for an exact
relation between the surface charge density and some func-
tion of the curvature has been amply demonstrated,’ the
above is sufficient to suggest that for a reasonably shaped
lightning conductor the maximum charge density will oc-
cur near the point at which the mean curvature is a maxi-
mum.
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Rayleigh’s dissipation function % defined by’
F =2 S KL AKVy+ KV (1)

is useful to describe the equations of motion of a system of
N particles submitted to conservative plus dissipative
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forces (denoted by F;) when the latter depend linearly on
the velocities, that is,

F;x = —_le/i)ﬂ Flly = _Kynyr F;= —KzI/iz’
(2)
where K, K, K, are positive constants. One has
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