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It is accepted generally that the electric field strength on the surface of an isolated charged
conductor is greatest where the surface curvature is greatest. We show here that there is, in fact,
no relationship between these two maxima and that, in general, they are located at different points
on the surface. Two classes of analytic examples are offered: one using conformal mapping
techniques and the other involving small perturbations of a conducting spherical surface.

It is amusing how pervasive a misconception can be,
even in as cut and dried a subject as electrostatics. In this
paper we confront the “common knowledge” that the elec-
tric field at the surface of an isolated conductor is greatest
where the curvature is greatest. It is in fact true that when
the curvature is singular the E field is also singular. The
coronal discharge near sharp points is exploited in light-
ning rods and familiar in electrostatic demonstrations.
Proofs that |E| becomes infinite at sharp outer edges and
conical apices can be found in standard textbooks."

“Proofs” of the general relationship of |E| and curvature
are rather more vague when curvature is finite. We have
surveyed widely used sophomore-level physics texts and
have found that the typical approach to the relationship is
based on a simple example: Two spheres of different radii
are connected by a long fine wire. It is demonstrated that
the E-field strength on each of the spheres is inversely pro-
portional to the radius of that sphere. The generalization
that

|E| < 1/R, (1)

where R is the “radius of curvature” of the surface, is then
either implied or stated explicitly. In one (older) text this
method is pushed further; a sphere of radius R is matched
to a point on the conducting surface and it is “proved” that
in terms of the potential V (relative to infinity) of the con-
ductor and the “radius of curvature” R at the point

|E|=V/R. (2)

A more satisfactory, although heuristic, approach also
appears in the texts. Equipotentials very near a nonspheri-
cal conducting surface are sketched; it is noted that the
equipotentials tend to become spherical at large distances.
As a consequence the equipotentials are most closely
spaced, and hence the E strength is greatest, where the
curvature is greatest (see Fig. 1).

In addition to surveying the texts we have harassed col-
leagues and students at several universities with the ques-
tion as to where the E strength is greatest. The response
showed that the lesson in the texts has been well learned.

All this is more than sufficient motivation for us to dem-
onstrate in this article that on the surface of a conductor
there is no general relationship between the location of the
maximum of curvature and the maximum of |E|. Our dis-
cussions with our colleagues has forewarned us that there is
astrong tendency to try to save some relationship by modi-
fying and specializing it. We will therefore show more spe-
cifically that | E| is not even a Jocal maximum where curva-
ture is a Jocal maximum. (We will, in fact, give an example
in which |E| is a maximum where curvature is a local mini-
mum.) We will also show that no relationship between the
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locations of the maxima can be salvaged by requiring that
the conductor be convex.

The nonexistence of a relationship between maximum
|E| and the maximum curvature is rooted in the fact that
they depend in entirely different ways on the shape of the
surface. Curvature depends only locally on the shape of the
surface. At any point of the surface the curvature is deter-
mined by the first two derivatives, at that point, of the func-
tion specifying the surface. The curvature at that point is
independent of what the surface does at points a finite dis-
tance away. The E-field strength, on the other hand, is de-
termined by a solution of Laplace’s equation for the elec-
trostatic potential @. The solution depends on the
specification of boundary conditions, in this instance the
value of the potential everywhere on a closed surface.
Changing the shape of the surface in one region influences
the value of the potential at distant locations.

We start our set of examples with a heuristic one, which
emphasizes this local dependence of curvature and nonlo-
cal dependence of |E| on surface shape. The E field inside a
closed conducting container is zero; the E field inside an
almost-closed conducting container is almost zero. The al-
most-closed container shown in Fig. 2 therefore has very
weak fields in the hollow that would be enclosed by the
container were it not for the narrow gap at the top. At the
bottom of this hollow is a small hemispherical pimple. By
making the radius of the pimple sufficiently small we can
guarantee that the maximum surface curvature is on the

Fig. 1. Proof that [Ef is always greatest where the curvature is greatest.
The equipotentials (dashed lines) are most closely spaced, and hence the E
strength is greatest, where the curvature is greatest.
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Fig. 2. Proof that |E| is not always greatest where the curvature is greatest.
(Figure 2, like Fig. 1, represents a cross section of a solid conductor
formed by rotating the figure about the vertical symmetry axis.) The cur-
vature is greatest at the bottom of the hollow, on the small hemispherical
pimple, but the E field there can be made arbitrarily small by narrowing
the gap at the top.

pimple. But the E field will not or need not be a maximum
on the pimple. No matter how sharp the pimple is (i.e., no
matter how small its radius) we can make the |E|-field
strength on the pimple as weak as we like by making the
almost-closed container more nearly closed (i.e., by nar-
rowing the gap at the top).

If we are to exhibit quantitative examples we can no
longer avoid a quantitative way of dealing with curvature.
In many texts this is done with the “radius of curvature™ at
a point. This is presumably the radius of the sphere which
approximates locally the surface at that point. Such an ap-
proximation-by-sphere is, in fact, completely explicit in
one of the texts. Despite the texts, in general a surface near
a point cannot be approximated as a sphere and there is no
unambiguous meaning to “radius of curvature.”

The correct quantitative description of curvature at a
point P of the surface starts with a curve C, in the surface,
through that point, as shown in Fig. 3. The curve is para-
metrized by its arc length s (from any starting point} and at
any point we can compute the curve’s unit tangent
t = dr/ds. The outer unit normal n to the surface is defined
along the curve, so its derivative dn/ds can be computed. It
is fairly evident that dn/ds at P does not depend on any of
the details of curve C, except its direction at P, any other
curve with the same tanget t at P would lead to the same
dn/ds. At point P the scalar t - dn/ds then says something
about the “bending” of the surface in direction t.

The next truth is not self-evident, but is proved in any
book on differential geometry. There are two orthogonal
directions in the surface t,, t,, for which t + dn/ds is a maxi-

Fig. 3. Curve, unit tangent, and unit surface normal used in quantifying
curvature.
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mum and minimum. These directions are called the princi-
pal directions; the associated values of t - dn/ds are called
the principal curvatures «, and «,:

, dn
ds for t;

The reciprocals of the principal curvatures are called the
principal radii of curvature’ R, R,:

R, = 1/k,. (4)

For a nonprincipal direction t, the value of t  dn/ds is
calculated easily from the angle between t and the principal
directions, and from the values of the principal curvatures,
or radii. The complete characterization of the bending of a
surface at a point then requires the specification of the prin-
cipal directions and the associated principal curvatures, or
principal radii. If the orientation of the bending is not of
interest then only the principal curvatures, or radii, need be
specified. The orientation-independent information about
curvature is often not given as «, x, or R,, R, but is pack-
aged into two types of “average curvature”: “Gaussian cur-
vature,”

Ki=t H l=1’ 2- (3)

Ko =K, Ky (5)
and “mean curvature,”
Ky = 3Ky + K3). (6)

It is of more than a little interest that the mean curvature is
related to a property of the |E|-field strength near a con-
ducting surface. The fractional rate at which |E| decreases
with distance away from the surface of a conductor is given
by the mean curvature of the conductor?:

(1/|E[n- VIE| = — 2k,

The crucial point of the above discussion is that fwo
numbers characterize the size of curvature, so that the as-
sertion that “|E| is maximum where curvature is maxi-
mum” is not only wrong, it is also ill defined. It is always
harder to disprove an ill-stated claim and we will need to
show, with our examples, that |E| is neither an absolute,
nor a local, maximum where k¢ or k), is maximum.

Our first class of detailed examples involves a long con-
ductor of uniform cross section. If we idealize the conduc-
tor to be infinitely long, say in the z direction, then the
electrostatic potential @ is independent of z and Laplace’s
equation V2 = 0 becomes a 2-dimensional problem, in
the xy plane. We have exploited complex-variable tech-
niques and conformal transformations to find closed-form
solutions of Laplace’s equation for a 3-parameter family of
conductor cross sections, which more or less resemble Fig.
2 without the pimple. The details of this conformal trans-
formation are tedious enough to be distracting here and are
relegated to Appendix A. Here we concentrate on results,
presented graphically, of examples for particular geome-
tries.

The ambiguity of “radius of curvature” does not exist in
this case. By symmetry the z direction is a principal direc-
tion. The corresponding principal radius of curvature is
formally infinite. All the information about curvature is
therefore contained in one number, the principal curvature
« in the transverse principal direction. {We could of course
just as well use the principal radius of curvature, or the
mean curvature.) The transverse principal curvature is de-
termined from the curve giving the conductor cross sec-
tion; it is simply the reciprocal of the radius of the osculat-
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Fig. 4. Cross section of a long conductor. The enlarged detail shows the
displacement of the maximum of the surface E strength from the maxi-
mum curvature.

ing circle at any point of the curve and its calculation is
straightforward. (See Appendix A for details.)

Figure 4 shows a conductor cross section for a particular
choice of parameters. The greatest curvature occurs near
the opening of the gap, at the point labeled «,y,,, . The argu-
ments earlier detailed in this paper suggest that the magni-

Fig. 5. The variations of curvature x and E-field strength as functions of
arc length s, along the cross section illustrated in Fig. 4.
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Fig. 6. Convex cross section showing the displacement of the maxima of «
and |E|.

tude of E is small in the “hollow” and the maximum of |E|
should tend to shy away from the gap. The results present-
ed in Fig. 4 show that this does in fact happen. The maxi-
mum of |E| is further from the gap than the maximum of .

The results are presented in a different way in Fig. 5; the
values of |E| and « are plotted as functions of s, the arc
length along the cross section. The curvature has the phys-
ical dimension of inverse length so that numerical values
for «, as well as arc length, require a length scale for the
conductor cross section. Values in Fig. 5 correspond to the
“unit length” depicted in Fig. 4. The numerical values of
|E| arein arbitrary units. (The | E| values could be related to
the length scale and the charge per unit length on the con-
ductor.)

In our discussions of this topic with others we have been
accused of cheating by using a conductor which has a con-
cave region. Rather than debate the fairness and relevance
of a concave region we present a cross section which is
everywhere convex. The cross section in Fig. 6 results from
another choice of parameters in our conformal transforma-
tion. The convexity of this cross section is evident in Fig. 6
and is supported by the fact that the computed « is every-
where positive. This example, like that of Figs. 4 and 5,
show a displacement of the maxima of « and |E|.

Our second class of examples is axially symmetric first-
order perturbations of a spherical surface of radius R. We
take € to be a very small dimensionless number and consid-
er a surface defined by radius 7 as a function of polar angle
0, according to

r=R(l+6 y B"P,,(,u)), 1= cos 6, (7)
n=2

where P, is the nth Legendre polynomial and the set of

coefficients B, determines the distortion of the sphere. The

n = 0and n = 1 termsin the series expansion for 7@ ) corre-

spond, respectively, to a change in the size and the origin of

R. H. Price and R. J. Crowley 845



the perturbed sphere, and are of no interest here. It should
be noted that for small ¢ all surfaces given by Eq. (7) are
everywhere convex. It is very simple to solve, to first order
in €, for the surface E strength in terms of Q, the total
charge on the perturbed sphere. The result (detailed in Ap-
pendix B) is

El=0r (1 +¢ 3 Al - P (1) ®)
n=2

By symmetry it is clear that the principal directions on

the sphere are the ¢ direction (tangents to circles of con-

stant »,0 ) which we shall call t,, and the meridional direc-

tion (the “@ direction”) t,. The corresponding principal

curvatures to first order in € are shown in Appendix B to be

K1=R_1[1—-6n22/3,,(P,,—pi—P,,)], (%)

K2=R-—1|:1+€ i B.

n=2

X([n(n+ 1)— 1P, —,u;“i—P,,)]. (9b)

Since we are working only to first order in ¢ the arithmetic
mean of the principal curvatures (k,,) and the geometric
mean (corresponding to the square root of the Gaussian
curvature) are the same:

k=R "‘(1 + —;—e Y (n—1)n+ Z)ﬁ,,P,,(,u)). (10)
n=2

Local extrema of k and |E| will occur at the poles (8 = 0,

moru = + 1)and at the latitudes at which the derivatives,

with respect to u, of Egs. (8) and (10) vanish. If 8, = 0 for

all but a single value of n, the local extrema of « and |E| will

coincide; in general, however, Egs. (8) and (10) define differ-

BN

Fig. 7. A perturbed sphere with 8; = 6, 85 = — 1. Figure 7 is drawn with
a large value (¢ = 0.05) of the perturbation parameter to show clearly the
nature of the distortion of the sphere. The numbered points correspond to
the following extrema: (1) local minimum of «, absolute maximum of E; (2)
local maximum of ; (3) local minimum of E; (4) absolute minimum of ; (5)
absolute maximum of «; (6) local maximum of E; (7) local minimum of «;
and (8) local maximum of «, absolute minimum of E.
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ent functions of ¢z and, contrary to conventional wisdom,
only a fortuitous choice of the 3, will lead to coincident
local maxima of |E| and x away from the poles.* If the 3,
are chosen such that the maximum of either |E| or x does
not occur at a pole then the absolute maximum of |E| and «
will not coincide.

As an interesting specific example we choose 8, = 6,
Bs = — 1,and 3, = Ofor other values of #. For this choice,
depicted in Fig. 7, the sphere is perturbed with a fairly flat-
topped convex hump around the & = 0 axis. Because the
hump is flat topped, 8 = O 1is a local minimum of the curva-
ture; curvature increases with 6 out to 6~ 14.53°, where it
is a local maximum; the absolute maximum of curvature is
at 6~ 111.81°. The E-field strength is greatest at & = 0, so
that in this example not only is the absolute maximum of E
far removed from the absolute maximum of «, but it coin-
cides with a local minimum of curvature!

ACKNOWLEDGMENTS

We would like to thank Dr. Karel Kuchar for an inter-
esting argument, which he won, that led to the present arti-
cle. We also thank Dr. Edward Kreusser for amusing sug-
gestions in connection with Fig. 2. One of us (RHP)
acknowledges gratefully the National Science Foundation
for support under grant no. PHY81-06909.

APPENDIX A

Our first class of examples is based on a conformal trans-
formation of a crescent in the complex z = x + iy plane.
The crescent is formed from two circular arcs, as pictured
in Fig. Al, with both going through the points y =0,
x = + L. (Here L serves as the unit length, as shown in
Fig. 4.) The two parameters defining the crescent are most
simply taken as /, and /,, the y values of the centers of the
smaller and larger circles. In terms of these we can write y,
the interior angle at the sharp corners of the crescent, as

y=tan"'[L (L, —I)/AL? + L)) (A1)
It is useful also to define the exterior angle at the corners

a=2r—y (A2)
and an auxiliary angle

by = (w/ajtan™ (L /1,). (A3)

In the formulas for y and ¢, the tan~"' function is to be
taken in the range (0, 7/2).

For the conformal transformation we will need the com-
plex expression

E=@Ez+L)iz—L) (Ad)
We define its phase to be zero on the real z axis for x > L and
to be continuous everywhere outside the crescent. We next

define a conformal transformation from the complex z
plane to the complex W = U + iV plane by

W=(§ﬂ/a_e—2i¢o)/(§n-/a_ 1) (AS)

This transformation maps the exterior of the crescent in the
z plane to the exterior of the unit circle in the W plane.
Furthermore, it maps o in the z plane to « in the # plane.
Finally we define the complex potential

F=®+ip=InW. (A6)

Since F, outside the crescent, is an analytic function of z,
its real part @ (x,y) is harmonic (i.e., V2@ = 0). Itis also seen
easily that @ = 0 on the crescent (since |W| =1 on the

R. H. Price and R. J. Crowley 846
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Fig. Al. Geometric parameters used in the conformal transformation,
which maps the exterior of the crescent in the z plane to the exterior of the
unit circle in the # plane.

mapping of the crescent) and ® « In(x* + y?) at large dis-
tances from the crescent. Clearly, ®(x,y) then represents
the electrostatic potential outside a charged 2-dimensional
conducting crescent. The explicit function ®(x,p), without
reference to complex variables, is given by

¢ (X:y) = —l"' 111( R i +21 — 2R COS(¢ + 2¢0) )1 (A7a)
2 R“+1—2Rcos¢
where
R={[x+LP+yV/[x—LP*+y* 1}  (ATb)
and
¢=(m/a)f{6 —tan~ 2L /(x> +y* —L )]}, (ATc)

in which the principal branch — 7/2 <tan"'<#/2is to

be taken and

6=0, if x¥*+ Wy —05)*>I12+L? and x>+ °>L72,

if x243°<L?,

§=2r fx*+(p—1P<I?+L%and x*+y*>L2

{A7d)

The crescent is, of course, an equipotential of @ (in fact

the @ = 0 equipotential) but due to its sharp corners it is

not a useful choice as the conductor cross section. Any

@ > 0 equipotential, however, is a smooth curve and may

be chosen to represent the surface of a nonsingular conduc-

tor. The choice of the equipotential, along with the two
geometric parameters /,, /, defines a conducting surface we

=,
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b

Fig. A2. Equipotentials outside a crescent, as illustrated in Fig. A1, with
1, =6, 1, = 2.645, so that y = /16. Any of these equipotentials may be
chosen to represent the surface of a conductor with nonsingular curva-
ture. The equipotentials labeled a and b correspond, respectively, to
@ = 0.04 and 0.22. Equipotential a is the conducting surface used in the
example depicted in Figs. 4 and 5. Equipotential b is the basis for the
example of Fig. 6.

may use as an example for the relation of | E| and «. Typical
equipotentials are shown in Fig. A2.

The value of |E| on any of these surface is calculated in a
straightforward manner, in principle, from

(2 + (2]~

where the second equality follows from the Cauchy—Rie-
mann relations. The formula for the radius of curvature of
a plane curve can be found in elementary calculus books.
Equally well we can start with the expression for the unit
normal n=V®/|V®P| and the unit tangent vector
t = e, Xn (where e, is the unit vector in the z direction).
Differentiation with respect to arc length can be written as

dF

dz |’ (4%)

d_, 3,3 A9)
ds ox dy
so that we have
c—tedn _ [(192)2 " (192)2] -
ds ox dy
a¢)2 & P (8¢)2 3P
XIt— _—
[( ox/ & + dy/ dx*
2
_ 2223_‘1) ge . (A10)
dx dy dxdy

The solutions presented in the text require solving Eq. (A7)
numerically for x,y pairs corresponding to the value of @
chosen to define the conducting surface. For the x,y pairs,
Eqgs. (A8) and (A 10) are then used to find |E| and « at every
point on the surface.
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APPENDIX B

For our second class of examples we need to evaluate the
curvature expression t - dn/ds of Eq. (3) in terms of compo-
nents with respect to the orthonormal basis vectors e, , e,,

‘e, for spherical coordinates. With these basis vectors a unit
tangent vector t and the unit normal n are written as

t=1t"e, + 1%, +t%,,
n=n'e, + n’e, + n,. (B1)
The derivative with respect to arc length ds in the direction
tis
d_,9 ¢t _a A
ds o r 38 rsind s

In computing the derivative of n we will need the coordi-
nate derivatives of the basis vectors:

(B2)

a a a

'i_——sin 0e¢, ji:eg, e’ =0,

0ol ae a

a J o

—ef-=cos Oe,, P _ —e,, ﬁ:o. (B3)
o 96 ar

For an axially symmetric surface specified by r = 7@ ) the
outward unit normal is given by
nw=r/P+rY)? nf= =/ + ) (B4)

where we use prime to denote d /d6. Symmetry dictates
that one of the principal directions is t, = e,. For this di-
rection

d__1 3

ds rsinf 3¢
Since n” and n° are independent of ¢ we have
dn - d

ds ds ds &

(B3)

e, +n0Le =1 ( %, +n98ﬁ)
rsin ¢ 5¢ a¢

= %(n’ + cot On®)ey,

so that, for this principal direction,
EPRCL . i(n’—l,— cot 6n?)
ds r
_1—(r/rcot & B6
(r2 + rl2)l/2 . ( )
The second principal direction is given by
¢ = 1
2= (rz + r,2)1/2
for which
d 1 ( , d a3 )
= =4+ —, (B8)
ds (P+r)2\
so that
s P+
d 1
Sl = ———————¢,. B9
ds G0 (P + r3)/? (B9)
We evaluate the derivatives of the components n”, n? with
a__ 1 4 , (B10)
ds (P +r3V? do
where d /d8 is the total derivative (' 3/dr + 3/90 ) along

(re, + rey), (B7)
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the curve r = 18 ). The result is

dmn _ ., 1
ds 2 (P + 312

[
(e aern )
=2+ ="y [(P+7rY?]. (Bll)
If the surface r= @) specified by Eq. (7) is used
and terms of order € and smaller are ignored, Eq. (B6)
leads to the result for «, given in Eq. (9a). Similarly
Eq. (Bl1) leads to Eq. (9b) if the equation
(1 —u? d*P,/du* —2u dP,/du +nin+1) P, =0 for
the Legendre polynomials is used.
The electrostatic potential everywhere outside an axially
symmetric body with total charge Q can be written as

&= Q+HZI ()"HP,,(/L)-

At the surface r = H8) specified by Eq. (7) the potential to
first order in € is

o| =223 pru+ S alim B

If @ is to be constant on the surface the right-hand side
must be independent of 1 so that @, = 0 and

(B12)

a, =€Q/R)B,, n>2, (B14)
and outside the surface, to first order in €,
n+1
&= Q+eQ s B( ) P.(w) (B15)
n=2
The electric field 1nten51ty is given by
a¢ 2 a¢ 172
E| = (_> ( ) ] . B16
[E| [ ar te  \ 96 (BI6)

The 3® /90 term contributes to |E| only to order €* and
higher, so that to first order in €
P

Bl = |[SE
r

_9 .9

SregSmrm i
The E-field strength just outside the surface is found by
using Eq. (7) in Eq. (B17). The result, to first order in ¢, is
given as Eq. (8).

P,(p). (B17)

3 Permanent address: Department of Physics, California State University,
Fullerton, CA 92634.

1See, for example, Secs. 2.11 and 3.4 inJ. D. Jackson, Classical Electrody-
namics (Wiley, New York, 1975), 2nd ed.

%If the two principal radii are equal at a point then, at that point, t « dn/ds
is independent of t. At such a point there is only one value of x and R and
the surface can be approximated near the point by a sphere. The points on
the axis of any surface of revolution have this property of possessing a
unique radius of curvature.

3This is given, for example, as Prob. 1.11in Ref. 1. This shows that, despite
the local nature of curvature, and the nonlocal nature of solutions of
Laplace’s equation, there can be some relationships between the two.

“The same argument can be applied to Egs. {8) and (9). The functional
form for |E| is different from that of either Eq. (9a) or (9b), so that there
can be no general relation between the maximum of |E| and the maxi-
mum of either principal curvature.

R. H. Price and R. J. Crowley 848



