Relation between charge density and curvature of surface of charged conductor
Kun-Mu Liu

Citation: American Journal of Physics 55, 849 (1987); doi: 10.1119/1.15010
View online: https://doi.org/10.1119/1.15010

View Table of Contents: https://aapt.scitation.org/toc/ajp/55/9

Published by the American Association of Physics Teachers

ARTICLES YOU MAY BE INTERESTED IN

The lightning-rod fallacy
American Journal of Physics 53, 843 (1985); https://doi.org/10.1119/1.14349

Comment on “Relation between charge density and curvature of surface of charged conductor,” by Kun-
Mu Liu [Am. J. Phys. 55, 849-852 (1987)]
American Journal of Physics 57, 1044 (1989); https://doi.org/10.1119/1.15819

On the distribution of charge over the surface of a conductor
American Journal of Physics 59, 656 (1991); https://doi.org/10.1119/1.16789

Comment on “Relation between charge density and curvature of surface of charged conductor,” by Kun-
Mu Liu [Am. J. Phys. 55, 849-852 (1987)]
American Journal of Physics 57, 1047 (1989); https://doi.org/10.1119/1.15820

Of lightning rods, charged conductors, curvature, and things
American Journal of Physics 59, 658 (1991); https://doi.org/10.1119/1.16790

A pulser circuit for measuring the speed of light
American Journal of Physics 55, 853 (1987); https://doi.org/10.1119/1.15011

SIGN UP NOW

A%l%{%é& Sign up for monthly

of PHYSICS' Table of Contents email alerts Bt



https://images.scitation.org/redirect.spark?MID=176720&plid=1245348&setID=405125&channelID=0&CID=422239&banID=519970866&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6b2d37446dd0bfe6fb165ad70ef5063a831e97d2&location=
https://aapt.scitation.org/author/Liu%2C+Kun-Mu
/loi/ajp
https://doi.org/10.1119/1.15010
https://aapt.scitation.org/toc/ajp/55/9
https://aapt.scitation.org/publisher/
https://aapt.scitation.org/doi/10.1119/1.14349
https://doi.org/10.1119/1.14349
https://aapt.scitation.org/doi/10.1119/1.15819
https://aapt.scitation.org/doi/10.1119/1.15819
https://doi.org/10.1119/1.15819
https://aapt.scitation.org/doi/10.1119/1.16789
https://doi.org/10.1119/1.16789
https://aapt.scitation.org/doi/10.1119/1.15820
https://aapt.scitation.org/doi/10.1119/1.15820
https://doi.org/10.1119/1.15820
https://aapt.scitation.org/doi/10.1119/1.16790
https://doi.org/10.1119/1.16790
https://aapt.scitation.org/doi/10.1119/1.15011
https://doi.org/10.1119/1.15011

about 18 h earlier than the previous common year (24 h
from the extra day in February minus the usual 6 h ad-
vance). The peak-to-peak amplitude of the oscillation in
Fig. 1 is thus about 18 h. The problem with the Julian cal-
endar, namely that the tropical year is actually shorter than
365.25 days, also is shown clearly by the graph. Over the
course of time, the equinox occurs earlier and earlier in
March and the year; this was precisely the problem which
the Gregorian calendar reform sought to correct. Indeed
the slope of the oscillatory pattern is 11 min per year, the
difference between the average length of the Julian year
and the tropical year. The Gregorian reform of the Julian
leap year rule stipulated that century years not divisible
exactly by 400 (such as the year 1900) are NOT leap years
(as they would bein the Julian scheme). This effect is illus-
trated by the large “discontinuity” in the periodic pattern
in the transition from the 19th to the 20th century; for 7
years the time of the equinox retreats further into March at
the rate of about 6 h per year. Century years which are
exactly divisible by 400, such as the year 2000, are normal
leap years.® Thus, the periodic pattern (with its 11 min per
year negative slope) will continue past the year 2000 with-
out a “discontinuity” into the 21st century. Figure 1 also
enables students easily to predict (by extrapolation) ap-
proximate past and future times of the vernal equinox as an
interesting exercise. Toward the end of the 21st century,
the date of the equinox actually will be as early as 19
March. Thus, the date of the equinox can occur as early as

19 March and as late as 21 March and remains confined
between these dates. For the present and for most of the
21st century, the most frequent date is 20 March. Of
course, similar patterns exist for the dates and times of the
autumnal equinox and the two solstices.

The figure thus illustrates that more can be done with the
Gregorian reform than memorize leap year rules and the
name of Pope Gregory.

' Among others, see George O. Abell, Exploration of the Universe, 4th ed.
(Saunders College, Philadelphia, 1982), pp. 128-130.

2G. Moyer, “The Gregorian Calendar,” Sci. Am. 246, 144 (1982).

3D. McNally, “The First 400 Years of the Gregorian Calendar,” Irish
Astron. J. 16, 17 (1983).

“The gradual slowing of the rotation of the Earth due to tidal friction
causes an additional small contribution.

SFor a discussion of the precession see Bernhard M. Haisch, “Astronomi-
cal precession: A good and a bad first-order approximation,” Am. J.
Phys. 49, 636 (1981).

$Data for the graph were secured (and reduced when necessary ) from The
American Ephemeris and Nautical Almanac, now The Astronomical Al-
manac, and Planetary and Lunar Coordinates for the Years 1984--2000,
(U.S. Government Printing Office, Washington D.C.).

"The precise meaning of the tropical year is discussed by Reuben Benu-
mof, “Astronomical meaning of a tropical year,” Am. J. Phys. 47, 685
(1979).

$The scheme subsequently has been modified slightly such that millennial
years divisible exactly by 4000 (such as 4000, 8000, 12 000) will be com-
mon leap years.
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L. INTRODUCTION

This note deals with the relation between charge density
and curvature of the surface of a charged conductor and
arrives at the conclusion that for the isolated charged con-
ductors, whose surfaces are quadric, the charge density is
directly proportional to the fourth root of the Gaussian
curvature of the surface. '

How the charge will be distributed over the surface of an

isolated charged conductor is a subject of significance for.

discussion in electromagnetic theory. It is shown in many
textbooks that it would be difficult, if not impossible, to
obtain an exact analytic expression. Therefore the discus-
sion on this topic only illustrates qualitatively that the sur-
face density is greater at regions of large curvature and less
where the curvature is small.
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By comparing the charge density and curvature of sur-
face of many isolated charged conductors, the author has
discovered that, at least for the conductors whose surfaces
are quadric, there is quantitative relation between them.

II. MEASUREMENT OF DEGREE OF
CURVATURE—GAUSSIAN CURVATURE

According to differential geometry, the degree of curva-
ture of a surface is described by Gaussian curvature. Let
r=r(u,v) by a parametric equation of surface S; the Gaus-
sian curvature is expressed as®

_LN-M?

267 (1)
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where
L=r,n M=r,n N=r,n,
E=r,r,, F=r,r,, G=1r,1,,
with n the unit normal vector:
_ X,
e, Xr, |

If the surface equation takes another form; z = z(x,y)
then

rt—s?
= =5 2
(1+p*+4¢%)? 2)
where
oz oz 9%z
= q=_7 r=—,
Ix dy ox?
9%, 9
xdy’ W

(See Appendix.)

Now the Gaussian curvature of ellipsoids, hyperboloids
of revolution, and elliptic paraboloids of revolution will,
respectively, be computed as follows.

A, Ellipsoid*
The surface equation can be written as
x* z
pr p+——1
or
x2 y2 172
=fi-%-32)
then
pod_ _Ex
Ix @z’
dy a2z
,_02_ _ 2+ (/a’)x
x? a* 2 ’
% ¢t xy
S=—0F-= -5, 3
dxdy a*h? ()
32 P4 ENY
ay2 b2 23
at—s* 1

= A+ +¢) T
% 1
[(x¥/a*) + (*/b*) + (Z/cH)]?

At the three pairs of apexes we have

x=ta y=z=0,

K, =5
b%?

x=z=0, y=+b, (4)
b2

Kb=a2C2’ (5)
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(6)

x y z:
Tt @
or
x2 y2 172
=o(G-3)

Using the same procedure as in Sec. II A, we obtain
1 1
C @%bt [(x¥/a*) + (/b + (/D]

At the apex of hyperboloid, x =a,y =z =0,

aZ

bt

(8)
K. = (9

C. Elliptic paraboloid of revolution

k2 +42kz=x>+y* (kisaconstant)

_9z _x . _0%_y
ox k ¥ k’
%z 1 %
=——=——’ — =O’
T k 5 Oxdy (10)
2
;=92 1
vk
k? 1

TPk atkr2)?
At the apex of paraboloid, x =y =0,z= — k/2,

Ko=—1

27 (11)

II1. CHARGE DISTRIBUTION OVER THE
SURFACE OF AN ISOLATED CONDUCTOR

Suppose the surface equation of conductor is
f (x,p,2) = k. Since the surface of conductor is an equipo-
tential, it may be imagined that the field potential ¢ is a
function of fonly, i.e., ¢ = @[f (x,y,2) ], where @ satisfies
Laplace’s equation Vg = 0.

Taking derivatives with respect to x, y, z yields

Op _dp & Jdp _dpdf dp _dedf

ax df ox ay df &% 9z df oz’

d’p _dp d a¥f + ( ar )

ax*> df x*  df?

% _dp 62f d’ep (6])

N  df 9 df dft

gt Q)

V¢~—‘Ev2f+“ 2 (vpH2=0,

(12)

df df?
Vi _ _dp/df?
(VN2 dp/df
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Integrating Eq. (12), the potential may be obtained

(d 7df) (de /df) _ sz
de /df (Vf)2
dp _ _J VY i +c,
7 oYt
o (13)
i£=A wp?
df

p= AJ f(‘m* df+B.

Constants A and B depend on the boundary conditions.’

By using Eq. (13), one obtains the electric intensity £ at
the charged conductor, and then the surface density is de-
rived. Now the surface density will be given in several
cases.

A. Ellipsoid ‘
The surface density of a conducting ellipsoid is already
obtained
(2,2, 2y
" abe b*
J

where o is the surface density and q is the total charge.5
At the three pairs of apexes we have

x=+4a, y=z=0, o,=q/bc, (15)
x=z=0, y=+b, o,=¢q/ac, (16)
x=y=0, z=+¢, o, ,=gq/ab (17

B. Hyperboloid of revolution of two sheets

Rewrite the surface equation as

Vx+eY 4+ +2 —J(x =) +y+ 22 =k(k>0).

Relations between ¢, k and a,b [see Eq. (7)] are k = 24,
c=a+b.

Put

u=(x+c)+y* +22 v=(x—c)?+y*+2,
ie,f=Ju—v.

We obtain

o=af Ty,

A 2+ [N+ + P +Z2 —Jx—a)"+) +22]

p=

4c 2 —[VEx+e)+yr+2—Jx—) >+ +

and the intensity at points just outside the surface is -

A x2 y2 22 )— 172
+_ ’
=57 (37
then
60"4 2 22 ) 172
LTI AR 2 . (18)
" 2ab? ( 4 b b*
At the apex of the hyperboloid
€0 1)-1/2 €oA
= — ==, 19
7= b’ ( 2b2 (%)

C. Elliptic paraboloid of revolution

—z+VX*+ Y+ =k,
ie.,
f=—z+V7+y"+ 2.

We obtain g =4 In( —z+ x>+ +22) + B and the
intensity at points just outside the surface is

E—— V24
VE Vk + 2
then
V2 €4
Kkk¥z
At the apex of the paraboloid
_ Ved _ 24
CkVEZZ K
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o=— (20)

(21)

=i

i
IV. CONCLUSION

Comparing Egs. (14), (15), (16), (17), with (3), (4),
(5), (6) we obtain, for a conducting ellipsoid,

0:0,:0,:0, =K V* Ka'* Kb /4 Ke'/4 .

Similarly, compare Eqgs. (18), (19), with (8), (9) and
(20), (21) with (10), (11); we obtain, whether conduct-
ing hyperboloid or conducting paraboloid, the following
relation;

o/, = (K /Kg)""*,

i.e., for an isolated charged conductor no matter whether
its surface is elliptic, revolution hyperboloid, or revolution
paraboloid, the charge density is directly proportional to
the fourth root of the Gaussian curvature of the surface.

The above results reflect the fact that the charge density
is greater at regions of large curvature, less where the cur-
vature is small. The same relation between the intensity at
points just outside the surface and the curvature exists.
However, the variation for charge density and intensity
with curvature is not as quick as expected.

Results from conductors with surfaces of different shape
are so consistent that it is natural for us to expect that the
quantitative relation is a universal rule for conductors
whose surfaces can be expressed by analytic functions.

APPENDIX

Equation (2) derived from Eq. (1):
Surface equation z = z(x,y) is a particular case of

r=r(u,yw),
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where u = 2, v =y, then
E=ror,=1+P% F=rer,=pq,
G=r,1,=1+¢°,

since
(r, Xr,)? = (r,r,)(r,r,) — (r,or,)*
=EG—F?,
we have
n= rxxl'y —_ (—P,—q,l)
VEG=F* J1+p°+¢
and
L—rxx-n=———-r—-,
VI+p07+ ¢
M=r_n= 2 R
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N=ryy-n=———t—,
Vvi+p°+g
then ;
2 2
K:LN_M — rt—8

EG—F* (l+p +¢)° "
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