Randall Munroe/xkcd.com ## Lecture 11 outline: - Comments on homework and knowing when to approximate. - Field of a plate - Behavior of conductors - Definition of Capacitance - Capacitance of parallel plates - Coaxial capacitors SPN 2-09b: A square conductor has Q = 15 C, s = 3 km. Calculate the electric field at y = 100 m. ### SPN 2-09c: Calculate the electric field at y = 100 km. # SPN 2-09b: A square conductor has Q = 15 C, s = 3 km. Calculate the electric field at y = 100 m. Discontinuity of a field at a boundary You cross a surface with a charge density sigma. - A) The normal component (En) changes by Sigma / epsilon_0, and the tangential component (Et) may change too. - B) En changes by sigma/2 eps0, and Et may change. - C) Et changes by sigma/eps0 - D) En changes by sigma/eps0, and Et does not change ## **CONDUCTORS** "Conduction electrons" are not bound to their atoms. (A conductor is a tube of free electrons) Excess charges go to surface of conductors Field inside a conductor is zero Conductors placed in external fields polarize ## **CAPACITANCE** Arbitrary conductors charged equal and opposite Calculate potential: C = Q / V # Parallel Plate Capacitor # Parallel Plate Capacitor # RG 58/U Type #### **Product Construction:** #### Conductors: - Copper per ASTM B-3 - Tinned copper per ASTM B-33 #### Insulation/Core: - Solid and foam polyethylene (PE) designs - Solid and foam fluoropolymer (FEP) design #### Shield: · Tinned copper braid #### Jacket: Premium PVC compound #### Packaging: Please contact Customer Service for packaging and color options #### Applications: - Suitable for RF signal transmission - Broadcast - LAN & data transmission - See Coax Connector Cross Reference, pages 192-199 | | CATALOG | AWG
SIZE | INSULATION
MATERIAL | | SHIELD
COVERAGE | NOMINAL
O.D. | | NOMINAL CAPACITANCE | | VELOCITY OF PROPAGATION, | NOMINAL
IMPEDANCE, | NOMINAL
ATTENUATION | | |----|---|---|------------------------|------|----------------------------|--------------------------------|------|---------------------|--------|--------------------------|-----------------------|---------------------------------|--------------------------------| | | NUMBER | NOM. DCR | INCHES | mm | NOM SHLD DCR | INCHES | mm | pF/ft | pF/m | % | Ω | MHz | dB/100' | | | C1117
RG 58/U Type | 20 Ga.
Solid Bare
Copper
10.1 Ω/Mft. | Solid PE | | 70% Tinned
Copper Braid | Black PVC | | 28.50 | 93.51 | 66 | 53 | 1
10 | | | = | 9 | | 0.116 | 2.95 | 6.0 Ω/Mft. | 0.195 | 4.95 | | | | | 50
100
200
500
1000 | 4.20
6.00
10.17
16.50 | | RO | C1155
RG 58 C/U Type
MIL-C-17G Type | 20 Ga.
(19/.0071)
Tinned
Copper
10.8 Ω/Mft. | Solid PE | | 95% Tinned
Copper Braid | Non-Contaminating
Black PVC | | 30.80 | 101.05 | 66 | 50 | 1
10
50 | 0.42
1.50
3.70 | | M | | | 0.116 | 2.95 | 4.3 Ω/Mft. | 0.195 | 4.95 | | | | | 100
200
500
1000 | 5.40
8.10
13.86
22.80 | Conductors a and b are insulated from each other, forming a capacitor. You increase the charge on a to +2Q and increase the charge on b to -2Q, while keeping the conductors in the same positions. What effect does this have on the capacitance *C*? - A) C is multiplied by 4 - B) C is multiplied by 2 - C) C remains the same - D) C is multiplied by ½ - E) C is multiplied by 1/4 You reposition the two plates of a capacitor so that the capacitance doubles. The charges +Q and -Q on the two plates are kept constant in this process. What happens to the potential difference V between the two plates? - A) V is multiplied by 4 - B) V is multiplied by 2 - C) V remains the same - D) V is multiplied by ½ - E) V is multiplied by 1/4 $$C = \frac{2\pi\epsilon_0 \epsilon_r L}{\ln(R_2/R_1)}$$ $R_2 = 1.5 \, \text{mm}$ $R_1 = 0.406 \, \text{mm}$ $\epsilon_r = 2.3$ (polyethylene) $$C = \frac{2\pi 8.85 \times 10^{-12} 2.3}{\ln(1.5/0.4)} = 97 \text{ pf/m}$$ Six charges are placed on a spherical conductor, which is then surrounded by an initially uncharged thick spherical "shell". How will the charges rearrange themselves once the two objects are put together? Conducting sphere of radius $^{\Gamma}_{0}$ has surface charge density σ_{0} . It is then surrounded by a neutral spherical conductor. What are the charge densities at $$\mathbf{r}_1$$ and \mathbf{r}_2 $$(A)$$ σ_0 and σ_0 (B) $$\sigma_0 r_0 / r_1$$ and $\sigma_0 r_0 / r_2$ (C) $$\sigma_0 r_1^2 / r_0^2$$ and $\sigma_0 r_1^2 / r_0^2$ (D) $$\sigma_0 r_0^2 / r_1^2$$ and $\sigma_0 r_0^2 / r_2^2$ Object i and ii are concentric spherical conductors as shown. Object i has a net charge of Q_0 and surface charge σ_0 . Object ii has zero net charge. What is true about inner and outer surfaces of ii? $$(A)$$ $Q_{inner} = -Q_{0}$, $Q_{outer} = +Q_{0}$ (B) $$\sigma_{\text{inner}} = -\sigma_{0}$$, $\sigma_{\text{outer}} = +\sigma_{0}$ (C) $$Q_{inner} = -Q_{0}, Q_{outer} = 0$$ $$(D) Q_{inner} = -Q_{outer} < Q_0$$