
matrixoptics_hwB.py Fri Jan 30 17:47:23 2026 1

import numpy as np

def easy_mat(data, rows=2, cols=2):

 """ Makes it easy to create a matrix w/o typing so many []!

 Pass this function a tuple or list, optionally rows/columns

 Example:

 m = easy_mat([1, 2, 3, 4])

 """

 array = np.array(data)

 matrix = array.reshape(rows, cols)

 return(matrix)

def pretty_print(a):

 """ You don’t really need to use this.

 However it makes a matrix look more like a matrix

 does in Matlab.

 ’Pretty printing’ is an old programming term that just means

 printing something in a more human friendly format. It is left

 over from the dinosaur age when computer

 printouts were quite ugly by default.

 Example:

 m= ezmat([42, 3.14, 69, 12])

 pretty_print(m)

 Matrix follows:

 42.000 3.140

 69.000 12.000

 """

 print(’Matrix follows:’)

 if not isinstance(a,np.ndarray):

 print(’WARNING: Pretty print will not work except on arrays.’)

 for row in a:

 for col in row:

 print("{:8.3f}".format(col), end=" ")

 print("")

def trans(L):

 """

 L: translation distance (m)

 """

 T = easy_mat([1, L, 0, 1])

 return T

def thick(Rf, t, Rb, nE, nL):

 """

 Rf: radius of front surface (+ convex to left)

 t: lens thickness (0 for thin lens approx)

 Rb: radius of back surface (+ to left convex)

 nE: 1 n of environment

 nL: 1.5 n of lens material

"""

 R1 = easy_mat([1, 0, 1/Rf*(nE/nL-1), nE/nL])

 T1 = easy_mat([1, t, 0, 1])

 R2 = easy_mat([1, 0, 1/Rb*(nL/nE-1), nL/nE])

 S = R2@T1@R1

 return S

def compose_thick(objct, image):

 """

 This is the part that you fill out. Replace all the question marks

 appropriately.

 objct: The distance (in meters) to the object. A positive

matrixoptics_hwB.py Fri Jan 30 17:47:23 2026 2

 number means object is to left of first lens.

 image: The distance (in meters) to the image. This is something

 you have to guess. Keep changing it until the

 absolute value of "B" in the matrix is <0.001.

 When it is, then "image" will be the image distance.

 T: for translation

 R: for refraction

 S: for "System matrix"

 """

 pass

pass means do not do anything

This is the function you have to write. It’s like

compose_thin, but just will have more matrices

def compose_thin(objct, image):

 """

 I am doing this one for you so that you start out with

 working code. You dont need this function for problem 2-6.

 Use compose_thick instead.

 T: for translation

 R: for refraction

 S: for "System matrix"

 """

 T1 = trans(L=objct)

 R1 = thick(Rf=0.06,t=0,Rb=-0.06,nE=1.5,nL=2.5)

 T2 = trans(L=image)

 S = T2@R1@T1

 return S

def main():

 S1 = compose_thin(0.1, 0.2)

 pretty_print(S1)

 S2 = compose_thin(0.1, 0.0815)

 pretty_print(S2)

 S3 = compose_thin(0.07, 0.126)

 pretty_print(S3)

if __name__ == ’__main__’:

 main()

