matrixoptics_hwB.py Fri Jan 30 17:47:23 2026 1

import numpy as np

def easy_mat (data, rows=2, cols=2):
""" Makes it easy to create a matrix w/o typing so many []!
Pass this function a tuple or list, optionally rows/columns

Example:
m = easy_mat ([1, 2, 3, 4])

array = np.array (data)
matrix = array.reshape(rows, cols)
return (matrix)

def pretty_print(a):
""" You don’t really need to use this.
However it makes a matrix look more like a matrix
does in Matlab.

"Pretty printing’ is an old programming term that just means
printing something in a more human friendly format. It is left
over from the dinosaur age when computer

printouts were quite ugly by default.

Example:
m= ezmat ([42, 3.14, 69, 12])
pretty_print (m)
Matrix follows:
42.000 3.140
69.000 12.000
print ("Matrix follows:')
if not isinstance(a,np.ndarray) :
print (' WARNING: Pretty print will not work except on arrays.’)
for row in a:
for col in row:
print ("{:8.3£}".format (col), end=" ")
print (nn)

def trans (L) :

L: translation distance (m)
moan

T = easy_mat([1l, L, 0, 11)
return T

def thick (Rf, t, Rb, nE, nL):
mmn
Rf: radius of front surface (+ convex to left)
t: lens thickness (0 for thin lens approx)
Rb: radius of back surface (+ to left convex)
ng: 1 n of environment

nL: 1.5 n of lens material
mmn

Rl = easy_mat([1, 0, 1/Rf*(nE/nL-1), nE/nL])
Tl = easy_mat ([1, t, 0, 11)
R2 = easy_mat([1l, 0, 1/Rb*(nL/nE-1), nL/nE])

S = R2Q@T1QR1
return S

def compose_thick (objct, image):

This is the part that you £fill out. Replace all the question marks
appropriately.

objct: The distance (in meters) to the object. A positive

matrixoptics_hwB.py

Fri Jan 30 17:47:23 2026 2

number means object is to left of first lens.
image: The distance (in meters) to the image. This is something
Keep changing it until the

you have to guess.

absolute value of "B"

in the matrix is <0.001.

When it is, then "image" will be the image distance.

T: for translation
R: for refraction

S: for "System matrix"

pass

pass means do not do anything

This is the function you have to write.

It’s 1like

compose_thin, but just will have more matrices

def compose_thin (obijct,

image) :

I am doing this one for you so that you start out with
working code. You dont need this function for problem 2-6.
Use compose_thick instead.

T: for translation
R: for refraction

S: for "System matrix"

Tl = trans (L=objct)
R1
T2 trans (L=image)
S = T2Q@R1QT1
return S

def main () :

S1 = compose_thin (0.1, 0.2)

pretty_print (S1)

S2 = compose_thin (0.1, 0.0815)

pretty_print (S2)

S3 = compose_thin(0.07, 0.126)

pretty_print (S3)

if name == ’'__main

main ()

7.

thick (Rf=0.06,t=0,Rb=-0.06,nE=1.5,nL=2.5)

