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abstract

In this work a theory for moisture interchange between cloud systems and their
environment in the tropical atmosphere is developed. Data collected during the inten-
sive operation period of TOGA-COARE (Tropical Ocean and Global Atmosphere—
Coupled Ocean-Atmosphere Response Experiment) is then used to study, on a case-
by-case basis, the nature of this interchange for different convective regimes. The
kinematic characteristics of the studied systems for each of the ten cases are syn-
thesized from Doppler measurements made by the two National Oceanic and At-
mospheric Administration WP-3D aircraft, while the environmental conditions were
retrieved from balloon soundings made nearby the studied region. For this ten-case
sample, a strong correlation between system-top height and tropospheric moisture (in
the layer between 1 and 10 km) is found. The analysis indicates that it is tropospheric
moisture which is controlling the height of the clouds and not vice-versa. It is found
that the role of small clouds is to moisten the environment while deep convective

regimes dry their environment.
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Introduction



In the tropics several convective regimes, ranging from suppressed to deep convec-
tion, can be found (Johnson et al. 1992). The study of these regimes is important
not only for increasing our knowledge about their internal dynamics and evolution,
but also for understanding the atmospheric circulations in which they are embedded.
For instance, shallow convection and stratiform clouds can have a strong effect on
radiative transfer; deep convective cores, on the other hand, can dominate the ther-
modynamic structure of the atmosphere via the latent heat release associated with
their precipitation.

Although many ideas have been proposed, determining where and when a partic-
ular kind of convection is going to occur is still an unsolved problem. The Boundary
Layer Quasi-equilibrium theory (BLQ) of moist convection developed by Emanuel
(1994) and Raymond (1995) addresses, at least partially, the question of how moist
convection is regulated over tropical oceans. In this theory, convection appears to
be initiated when the mean value of moist entropy in the boundary layer exceeds a
certain threshold. However, the kind of convection is thought to depend on mid-level
conditions in a way that is not well understood. Particularly, mid-level relative hu-
midity is believed to play a crucial role for the outcome convection. In this picture, a
dry mid-level atmosphere corresponds to a very suppressed condition for convection.
If the threshold value of boundary layer moist entropy is reached, then the main
function of convection is to start moistening the atmosphere, so shallow convection
may occur. Once the middle atmosphere becomes moist, convection can go deep. In
this case, huge amounts of latent heat are released due to precipitation formation

that takes place in the convective cores. In the stratiform region, however, things go



differently. Since precipitation tends to evaporate if the atmosphere is not saturated,
evaporation from falling stratiform particles tends to cool down this region, which
in turn promotes downdrafts. By this mechanism, low values of moist entropy are
injected into the boundary layer so its value is brought back below the threshold for
convection. Then, the next convection event has to wait until the surface fluxes of
moist entropy are able to recharge the boundary layer. In short, the hypothesis boils
down to an equilibrium between the surface fluxes and downdraft fluxes of moist en-
tropy, where downdrafts are modulated by mid-level moisture. Although BLQ theory
does not predict the kind of convection for a given environment, it does suggest a
link between mid-level moisture and type of convection. There are indeed some ob-
servational studies, based primarily on sounding arrays, that suggest the importance
of the mid-level moisture in determining the outcome of the convection (Brown and
Zhang, 1997; Sherwood, 1999).

In this study, we will not attempt to test the basic hypothesis of BLQ. Rather,
we will try to shed some light on the role played by the tropospheric moisture on the
characteristics of convection once it has been initiated. We use data from 10 case
studies observed during the intensive operation period of TOGA-COARE (Tropical
Ocean and Global Atmosphere-Coupled Ocean-Atmosphere Response Experiment)
to address the following questions: First, is there a reasonable correlation between
cloud top and environmental moisture present on a case-by-case basis? Second, what
is the nature of the moisture interchange between clouds and environment — is the
environment humid simply because we have bigger clouds that are moistening it? Or

do clouds grow larger because the environment is already moistened? In particular, we



try to understand the role of different convective regimes in this moisture interchange.

While the correlation between cloud top and tropospheric moisture is addressed
directly from the data analysis, the study of the moisture interchange requires a more
involved approach. In part one, we describe in detail this approach, which basically
consists in estimating the time rate of change of moist entropy and moist energy for
each case study. The concepts of moist energy and entropy are so fundamental to
our research that we explore how they are defined, how their governing equations are
obtained, and under which circumstances the budget equations of these variables can
be used to address the moistening or drying tendencies in the tropical atmosphere. In
part two, the preparation of sounding and radar data is presented first, followed by
the results obtained from those data. Conclusions are offered after part two. Since
the radar data analysis is central to this research and it is studied so extensively, we
believe that it deserves a full chapter. However, with the aim of keeping the focus on
the main purpose of this work, this chapter is offered as appendix B. We also include

a series of other appendices that support derivations and results.



Part 1

Fundamental Equations



As mentioned in the introduction, the main goal in this work is to understand
how convective clouds over the oceans moisten or dry their environment. A direct
approach to this problem is to analyze the budget equation of water substance, but
we show that the moistening or drying depends upon, among other things, good
estimates of precipitation. This fact precludes taking the direct approach, because
errors in the estimation of precipitation are as large as 50%. Thus, we must choose
an indirect approach toward this problem. The approach taken here is based on the
following assumption about the atmosphere: If horizontal temperature gradients are
small and vertical temperature profiles do not change much with time, then the mass-
weighted average of the energy and entropy depend only on the amount of water in the
atmosphere, and their maximum values are attained when the atmosphere becomes
saturated. Thus, an increase in the average values of energy and entropy indicates
moistening of the environment. In the deep tropics, horizontal and temporal gradients
of temperature are very small, so this approach is justified. Therefore in this part,
we derive expressions for the energy and entropy of a precipitating atmosphere, and
their evolution equations. We combine the budgets for energy, entropy, and water
to obtain equations which do not depend on precipitation. Then we show that even
when the modified equations for energy and entropy still contain unknown sources,
they can be used to study the moistening or drying tendencies in the environment
due to convective clouds.

We consider the atmosphere as a multicomponent fluid whose components can
flow relative to each other. Although we have included precipitation and cloud con-

densate as a part of this fluid, we follow the same formalism that is used to describe



inhomogeneous mixtures of gases (de Groot and Mazur, 1962).  Therefore, the rel-
ative motion between condensate and mean flow is described as a diffusive motion.
This approach allows for a more accurate account of energy and entropy budgets,
because it has the great advantage of considering drag forces as internal forces.

We assume that the atmosphere is composed of dry air, water vapor, cloud
droplets, cloud ice, liquid water precipitation, and ice precipitation. However, we
consider that cloud condensate is liquid below the freezing level, while above the
freezing level it is ice. Therefore, super-cooled droplets are not taken into account.
While this is an important issue in cloud microphysics, we assume that it does not
have a big impact on the overall budgets of the atmosphere. We assume that dry
air, water vapor and cloud condensate all have the same temperature, while various
forms of precipitation (ice, liquid or both) may have different temperatures.

The governing equations are derived by considering the budget of each variable
inside a fixed, but otherwise arbitrary, control volume. Once the governing equations
are obtained, we average them over a particular control volume.

Our final budget equations are restricted to the case where the precipitation that
reaches the surface is purely liquid water. This simplification, which is quite reason-
able for tropical regions, allows the elimination of all influence of the precipitation
from the budget equations. This fact is particularly important as precipitation is one

of the more poorly estimated variables in the budgets.



Chapter 1

Multicomponent fluids

Since our system is composed of dry air and water, it is a multicomponent fluid. We
will regard the different water phases as different components in the fluid. Further-
more, we consider precipitation and cloud condensate as different components, even
when they correspond to the same water phase.

In multicomponent fluids, one of the important parameters is the relative concen-
tration of each of the components. We define concentration in terms of mass fractions.
For instance, if in a fixed volume we have a total mass M, and the contribution to
this total mass due to the jth component is m;, then the concentration of the jth

component is given by

m;
= 1.1
QJ M ( )
The partial density is defined simply as
m.
pi = 7] (1.2)

where V' is the volume that contains the total mass, M.



Since the total mass is simply the sum of all masses from all components, the total

density may be defined as
1
P= v ij m; (1.3)
= D_pi (1.4)
J

In general, all components may move relative to each other. However, as a whole,
the fluid moves with some mean velocity. The center-mass velocity of a multicom-
ponent fluid is defined as the mass-weighted average of the velocities of each of the
fluid’s components:

1
V== pv; (1.5)
P
where p is the total density of the fluid, and the summation is over all fluid’s compo-
nents.

The difference between the center-mass velocity and the velocity of a fluid’s com-
ponent gives rise to the concept of diffusive velocity, which is normally used in the
description of heterogeneous gas mixtures. In our case however, we find it more useful
to define the diffusive velocities not with respect to the center-mass velocity, but with
respect to the dry air mean velocity. Nevertheless, the formalism remains the same.

Hence, the velocity of the jth component of the mix can be written as
\Z :Vd‘I‘VDj (16)

where v, is the mean velocity of dry air, and vp; is the diffusive velocity of the jth
component with respect to the dry air flow.
Similar to the center-mass velocity and total density, it is possible to define average

values for each intensive parameter of a multicomponent fluid. Call x; the value of



some parameter associated with the jth component in the mix. Then the mean value
of that parameter, associated with the fluid as a whole, is defined as the mass-weighted

average over all components of the mix:
1
X = ;ZP;‘X;‘ (1.7)
J

where p is the total density. Also, with every intensive parameter in a substance,
we can associate a density parameter given simply by the product of the intensive
parameter and the mass density of the substance. So, if x; is the intensive parameter
associated with the jth component and p; is the mass density of such component,

then the associated density parameter is given by
bi = piX; (1.8)

The concept of density parameter is very useful in defining fluxes of intensive param-
eters that arise due to the flow of matter. For instance, vapor flux can carry energy,
entropy, and momentum. If x; is one of the intensive parameters in our mix, then the
flux of this quantity due to the flux of the jth component of the fluid is defined as the
product of the associated density parameter with the velocity of the fluid component,

that is,
Jj = (pixi)vi (1.9)
and the total flux of x; due to all mass transports is

I =2 l(pix;)vil (1.10)

where the summation is over all components that make up the flux of mass. It will

be convenient to write this kind of flux as composed of two parts: convective and

10



diffusive. Using equations (1.6) and (1.7), we can write

J = ) pixi(Va+vp)) (1.11)
;
= VaD_piXi+ 2 PiXiVD; (1.12)
J J
= pxvq+ D, (1.13)

where we have defined D, as the diffusive flux of x.

11



Chapter 2

Standard techniques

In this chapter we present a standard technique used to derive the governing equation
in flux form of an intensive variable. In this technique, we first write a budget equation
in integral form for our variable, and then we use some mathematical properties to
extract the differential governing equation corresponding to the budget.

Writing down the budget equation is the most important part. It is where we
apply all the physics we know about the problem. The extraction of the differential
governing equation is a mathematical problem. We will call this mathematical part

“the standard fixed-control-volume technique.”

2.1 Budget balance

In order to write down the budget balance, we use the Eulerian approach in which
we consider the budget in a fixed control volume. Let’s call ¢; the amount per unit

volume (density) of some property in the fluid associated with component j of the

12



fluid. (Keep in mind that here density means density parameter, see equation 1.8.)

The total amount of this property in the control volume, V', is simply

v, :/V;z)j dv (2.1)

Since the control volume is fixed in space, the total change in ¥; is due to the net
flux through the control volume walls plus any sources and sinks of #; inside the
volume. Calling J; the net flux of ¢;, and §; its net source per unit volume, the

budget equation is given by

d
E/V;z)jdvz—fit]j-ﬁdﬁ/sjdv (2.2)

where the closed-area integral is taken over the surface of the control volume V', and
the unit vector 1 is the outward-pointing normal to such surface. The minus in front
of the closed integral is due to the convention of defining the normal vector, 1, as

going out of the volume.

2.2 Standard fixed-control-volume technique

Once we have the budget equation, the governing equation is obtained as follows:
we apply the Gauss’s theorem to the surface integral in the budget equation. The
total time derivative is introduced inside the integral as a partial derivative. This is
possible because the control volume is fixed in time. Therefore, the budget equation

can be written as a single volume integral

0%, s _
/V (WJrV-J] 5]) dv =0 (2.3)

13



Although the control volume is fixed, it is arbitrary. Hence, the equation must be
satisfied for any value of such volume, even in the limit where the control volume
goes to zero. This implies that the integrand itself must be zero, which leads to the

differential governing equation associated with the original budget of v;:

b

This technique will be used frequently through this part when deriving governing
equations for mass, linear momentum, energy, and entropy. The main challenge will

be in carefully writing the fluxes and sources for each case.
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Chapter 3

Governing equations

3.1 Mass Continuity

Here we present the derivation of the mass continuity equation for the jth component
in our fluid.

Call p; the density of the jth component of the fluid and v; the mean velocity of
the particles of this component. So, the net mass flux due to the jth component can

be written as

Jj=piv; (3.1)
Therefore, the mass budget in an Eulerian control volume can be written as
d A
E/‘/p] dV:—}ipjvj-n da—l—/‘/S] dV (32)

where the closed-area integral is taken over the surface of the volume V. The quantity
S, is the mass source of the jth component per unit volume. This equation basically

says that the increase of the total mass of the jth component inside the volume V'

15



is due to the inflow of the component into the volume, plus any additional source of
this component. In the case of water vapor, for instance, the source may represent
the conversion between water vapor and condensate.

Using the standard fixed-control-volume technique (see section 2.2), the differen-

tial governing equation for the mass of the jth component in our mix is given by

a .
S Vovi) = S, (3.3)

3.2 Dry air

Since in our atmosphere dry air is not created, destroyed, or converted into anything
else, its source per unit mass is zero; which leads to the following mass conservation
equation for dry air:

a[)d

W + V-(,odvd) =0 (34)

From now on, we use the subindex d to represent dry air properties, only.

3.3 Individual components of water substance

For each individual component of the water substance in our atmosphere, the source
term is different. For instance, since water substance is neither created nor destroyed
in our system, but simply transformed among its different phases, the sources for
each of the water components can be considered simply as the rates of conversion per

unit mass among those phases. All possible transformations among those phases are

16



listed below:

Source from into

Sz cloud — liquid water water vapor

Scisei cloud — liquid water cloud ice

Scpi cloud — liquid water ice precipitation

Scopt cloud — liquid water precipitation — liquid water

Spiy  precipitation — liquid water water vapor
Spiei precipitation — liquid water cloud ice

Spipi precipitation — liquid water ice precipitation

Seisw cloud ice water vapor
Scinpi cloud ice ice precipitation
Spisy  1ce precipitation water vapor

In all cases, a negative value of those rates would imply that the opposite transfor-
mation is taking place.

As an example, the total source for precipitating ice can be written as

S = Suspi + Spimspi + Seicspi — Spisso (3.5)

3.4 Total water substance

In general, estimating rates of conversion among different phases of water is a very
difficult task. Fortunately, the net source for total water inside any control volume
is zero, because water is just transformed among the different phases. Therefore, the

budget of total water substance in an arbitrary fixed control volume is reduced to the
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balance between the increase in total mass of water inside the volume and the inflow
of the different water components. In this case, the net flux of water is obtained by
adding the fluxes for all water components. If p; and v; are the density and velocity
for the jth component of water substance, then the flux of water from the control
volume is given by J,, = >_; p;v; where the summations extend only through the
water components.

Defining the total water density as

pu =20 (3.6)

and using equation (1.13), the total flux of water can be written in terms of its con-
vective and diffusive components as J,, = p, vy + D,,, where v, is the mean velocity
of dry air, and D,, = 37, p;vp; is the diffusive flux of water substance. Therefore, the

budget equation can be written as

d )
E/pr dV = —}é(pwvd—l—Dw)-n da (3.7)

Applying the standard fixed-control-volume technique (see section 2.2), we arrive at

the following continuity equation for water substance in flux form

Op
% +Ve(p,va+D,) =0 (3.8)

The continuity equation for total water will become very important in the derivation

of our final energy and entropy budget equations.
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3.5 Total Mass

Since neither the total water substance nor dry air have net sources, by using the
same arguments as in the previous section we can write the total mass continuity

equation for the atmosphere as

% +V-(pv) =0 (3.9)

where we have used the definitions of total density (equation 1.4) and center-mass
velocity (equation 1.5). Using equation (1.6), the center mass velocity can be written

in terms of the dry air and diffusion velocities as follows,
1
vV=vy+ EZIOJ'VD]‘ (310)
J

Therefore in terms of the dry air mean velocity, the total mass continuity equation
takes on the form
dp

a+v.(pvd) = —V.Dp (311)

where we have defined
D, =) piVp; (3.12)
j

as the diffusive mass flux.

3.6 Linear Momentum equation

Call p; and v, the density and velocity of the jth component of the fluid. The density

of momentum associated with the component is p;v;. Therefore, the flux of linear
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momentum due to mass transport is given by the tensor

>

M =D [(pjvi)v;] (3.13)

J

Hence, the budget equation for the total momentum inside a fixed-control volume
can be written as

d o

%/sz:pjvj dV:—]{gM-nda—l—}" (3.14)
where the summation is over all components of the mix. The source term, F, rep-
resents all forces acting over the fluid in our control volume. Generally speaking,
there are two kinds of forces: body forces and surface forces. Body forces may act on
every bit of matter inside the control volume and are therefore characterized by their
strength per unit mass. On the other hand, surface forces just act at the boundaries
of the control volume and they are characterized by a stress tensor. Call B; the body
force per unit mass acting on component j, and % the stress tensor. The sources of

momentum can be written as

F:f%-ﬁ da—l—/ZpJBi dv (3.15)
s v e
J

where the summation extends through all components of the fluid. Therefore, the

budget equation becomes

d o o
%/V,ovd‘/:—?il\/[-nda—l—]gT-nda—l—/vzj:ijj dv (3.16)

where the definition of the center-mass velocity (eq. 1.5) has been used.
Now, applying the standard fixed-control-volume technique (see section 2.2) the

governing equation for linear momentum in flux form is

a_(gtv) T Vf/[ = V’? + pB (3.17)
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where we have defined the net body force per unit mass as

1
J

3.7 Total energy equation

The total energy per unit mass of the fluid is defined as the mass-weighted sum of

the specific energies of all components of the fluid

1
e=—-> pie (3.19)
P

where p is the total density of the fluid. The total energy for each of the components

is in turn composed of the sum of internal (u), kinetic (k) and potential (¢) energies
ej =uj+kj+ & (3.20)

In order to write the budget equation for the total energy, we need to be able to
identify all forces that can do work on our system as well as all energy fluxes through
the boundary of the control volume.

Since the total energy of the fluid includes the potential energy, all conservative
forces that make up such potential do not enter into our budget. This is because
conservative forces only redistribute energy between potential and kinetic energy.
We will assume that all body forces acting on our fluid are conservative and that
their effects are accounted for in the potential energy term. Internal forces (like
drag between condensate and gas) do not need to be included, because they only

redistribute energy among its different forms, therefore they do not change the total
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value of energy in our volume. Forces that do not do any work on the system, like the
Coriolis force, also can be ignored in our analysis. On the other hand, surface forces
acting over the periphery of our volume constitute an important interaction between
our system and its environment. These forces include dissipative and non-dissipative

effects. They are represented by the stress tensor, which for Newtonian fluids is given

by

T=_-PT+7

+ (3.21)

>
where P is the thermodynamic pressure, [ the identity tensor, and U the viscous

stress tensor. The power associated with these forces is
}é(%-v)-ﬁ da (3.22)

where v is the center-mass velocity of the flow.

Besides forces doing work on the fluid, energy can leave or enter the system through
its walls. Heat conduction, plus wave and mass transport are the possible mechanisms.
Radiative heat on the other hand, may travel beyond the physical boundary of the
system before interacting with the system’s matter. So, this mechanism of energizing
the system is regarded as a source of energy.

Call Ji the radiative flux at any location. Then the source of radiative energy
per unit volume is defined as the convergence of the radiative flux, —V-Jr. Hence

the total radiative source of energy is given by
—/ Vg dV (3.23)
v

Note that the integration over a volume V' is, by the Gauss’s theorem, mathematically

equivalent to the radiative flux of energy passing through the physical boundary of
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this volume. Nevertheless, regarding the radiation as a source has the conceptual
advantage of explicitly excluding the radiation field from the system.

Returning to the exchange mechanisms, atmospheric waves travel in and out of
the control cylinder and they transport energy as they move. Even though in the
atmosphere there are a variety of waves (sound waves, gravity waves, Rossby waves,
etc.), we define Jy as the flux of energy through the control volume due to any wave
transport. Hence the net flux of energy due to atmospheric wave transport is given
by

—]fJW f da (3.24)

Note that when waves move in or out of the control volume, they must cross the
boundary. Therefore their effect, regarding energy transfer, could be accounted for
in the power associated with the stresses at the boundary of the control volume.
However, we have decided to exclude wave transport from the other energy transfers
taking place at the boundary, such as steady motion of the boundary, or dissipation at
the boundary. In this sense the velocity fields, and the thermodynamic pressure, we
are using in this work, do not include the variations associated with wave transport
phenomena.

The heat conduction mechanism can also be accounted for by defining the flux of
conductive heat through the control volume. Calling this flux J¢, the total heating

rate for the volume can be written as
—}KJC “h da (3.25)

Finally, the net flux of energy due to mass transport through the surface that encloses
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the control volume is given by

—prjejvj . fl da (326)
J

Using equation (3.19), and (1.13) this can be written in terms of convective and

diffusive fluxes as

— }{(,oevd +D.)-n da (3.27)

where v, is the mean velocity of dry air and

De = ijejVDj (328)
J

is the diffusive flux of energy.
Collecting all the contributions, the energy budget equation can be written as

follows:

d ~
E/Vpe v = — f{(,oevd—l—De)-n da
~ $do-hida— § I i da

+ $(Tv)hda— [ VeIg av (3.29)

Now using the standard fixed-control-volume technique (section 2.2), it follows that

the governing equation for the total energy in flux form is

d(pe)
at

R nd
+Vepevg+D. +Ip+Jc+Iw—-—T-v)=0 (3.30)

Assuming that our fluid can be regarded as a Newtonian fluid, the governing equation

may be written as

d(pe)

= 4 Vepevi+ Do+ Pv+Ir+3c+Iw—v-v)=0 (3.31)
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where v is the center-mass velocity.

In order to obtain a more succinct expression for the energy governing equation,
we use the relation between center-mass and dry-air velocities (equation (3.10)) and
the definition of the diffusive flux of energy (equation (3.28)) to make the following

rearrangements:

pevig+D.+Pv = pevy+ P

1
vi+ ; > pivpi| + D pi€ivp;
i i
9,
= ple+ Plp)va+ Y _[(Z)P + pj€jlvp;
§ P
= ple+ Pa)va+d (P +p;e)vp;
i

= ple+ Pa)vi+ ) pjle; + Pja;)vp; (3.32)

J

where « and o are the specific volumes for the fluid as a whole and its jth component,
respectively. Using the definition of enthalpy and total internal energy, we can show

that e; + P;a; is the Bernoulli function of the jth component. That is,

ej + Piay = (uj + Pjaj) + ki + &;

= hj + ki + &

= b, (3.33)
where

h]' = u]' —|— P]'a]‘ (334)

is the enthalpy of the jth component of the fluid. Hence, in analogy to the total

energy, the Bernoulli function for the system can be defined as

1
J
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which can be simplified to

b=e+ Pa (3.36)

Now using the definition of the Bernoulli function for the system and its components,

the governing equation for energy can be written as

d(pe)

o +Ve(pbvi+Ip+Ic+Iw +Dy—V-v)=0 (3.37)

where we have defined the diffusive flux of b as

Db = EpjijDj (338)
J

3.8 Entropy

Normally in thermodynamics, the entropy is defined only for systems in thermody-
namic equilibrium. For example, a system in which the three phases of water are
present would not normally have an entropy defined for it, except of course at the
triple point, where all water phases are in equilibrium with each other. For the case
in which only two phases of water are present at the same temperature, then in order
to assign an entropy to such a system, it would need to be saturated with respect
to either ice or water, depending on what the two coexisting phases are. In spite
of that, we will use the concept of local thermodynamic equilibrium (Callen, 1960)
to define a local entropy for any infinitesimal region of a non-equilibrium system.
Based on this concept, the functional dependence of the local entropy on the local
extensive parameters (volume, energy, etc.) is by definition taken to be the same as

such dependence in equilibrium. The assumption of local thermodynamic equilibrium
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also implies that the functional dependence of the intensive parameters (temperature,
pressure, etc.) on the local extensive parameters is the same as that for equilibrium.
(It is this last condition that allows us, for instance, to speak of the temperature vary-
ing continuously throughout a piece of material, despite the fact that temperature
itself is normally defined only for equilibrium systems.)

A system that is not in equilibrium will evolve until it reaches its equilibrium
state. For example, a closed system composed of water vapor and liquid water at
the same temperature is not in equilibrium unless the water vapor is saturated with
respect to water. Such a non-equilibrium system will be driven to equilibrium by
evaporation of the liquid water. This evaporation will act as a source of entropy,
increasing the entropy until the system reaches saturation. So in general, the entropy
for non-equilibrium systems will be governed by a tendency equation that tells us how
the entropy is evolving. In this section, we develop the governing entropy equation
in its flux form for our system.

The entropy per unit mass of a multicomponent system is defined as the mass-

weighted sum of the specific entropies of the components

1
s =— ijsj (3.39)
P

Therefore, the change of the total entropy inside a control volume is

d
= /V ps dV (3.40)

In the theory of irreversible processes, this change in entropy is separated into two
contributions: a flux of entropy due to the interactions of the system with its en-

vironment, which can be directed in or out of the system; and a source of entropy
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due to interactions within the system. These interactions never create a sink of en-
tropy (Prigogine, 1955).  This separation is extremely useful in the present work
because it allows us to concentrate on the estimation of the fluxes with the certainty
that the unknown sources may only increase the entropy inside the system. Therefore,
the expressions for the net source of entropy will not be discussed here but will be
referred to, in a generic way, as “the irreversible generation of entropy.” Its value per
unit mass will be represented by o. Hence, our task is reduced to finding appropriate
expressions for the entropy fluxes.

Entropy fluxes may be due to mass fluxes carrying mass from one point to another
as well as heat fluxes. Let’s first consider the flux of entropy through the walls of a

control volume due to mass transport. Such a flux can be written as

Js = Zp]‘SJ’V]‘ (341)
J

Using equation (3.39), equation 3.41 can be written in terms of convective and diffu-
sive transport as

J,=psvy+ Dy (3.42)
where

D, = ijSjVDj (3.43)

i

is the diffusive flux of entropy. As mentioned before, associated with this flux there
is a source of entropy whose unknown value we simply lumped into the irreversible

source of entropy. Note that even though an expression for this source can be found

in the book by de Groot and Mazur (1962), we still consider it as unknown because
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it is very difficult to estimate from the data, for we do not have reliable information
about the horizontal inhomogeneities in the system.

Heat transfers are due to conduction and/or radiation; recall that convection is
implicitly taken into account in the mass fluxes.

Heat conduction is set up by the gradients in temperature through the system,
which as a whole is not in thermodynamic equilibrium. Nevertheless, we can still
assume that every small piece of the system is locally in thermodynamic equilibrium.
Hence, the effect of heat conduction on the entropy of each piece of the system can
be characterized by the amount of heat yielded or absorbed by this piece and by its
absolute temperature, T'. Therefore, we can write the change in entropy per unit time

per unit volume due to conduction as

1
- V.J 3.44
7 Vo (3.44)

where Jo is the conductive heat flux. This expression can be considered as the
conductive source of entropy for the system; however if a piece of matter is actually
being cooled, this source becomes a sink of entropy. Therefore, this source does not
behave in the expected way. Nevertheless, in this case the separation between flux
and source of entropy can be formally established by rewriting the above expression

as follows:

1 Jo 1 ,
_TV.JC = — [V- (?) + ﬁJc . VT] (3.45)

This suggests that the effect of heat conduction on the system’s entropy can be

regarded as composed of two parts: A flow of entropy through the boundary of the
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system

Js=-V. (‘%0) (3.46)

and a generation of entropy inside the system

1
§=—z5do-VT (3.47)

The fact that this source is actually positive in the case of heat conduction comes
from the property that the conductive heat flux, J¢, is always directed against the
gradient in temperature. It is noteworthy that this source of entropy is proportional
to the gradient in temperature which is what set up the conduction process in the
first place.

Radiative heating, on the other hand, is not necessarily set by the gradients in
temperature of the system. Part of the radiation can travel through the system
without interacting with it (for example visible radiation in the atmosphere) or may
penetrate some distance before it interacts with the substance (Liou, 1980). Nev-
ertheless, when the radiation field interacts with a part of the system, that part is
heated or cooled, and its entropy is increased or decreased, respectively. Therefore,
as in the case of conduction, the change in entropy per unit time per unit volume due

to radiation can also be represented by

1
——V.J 3.48
7VIr (3.48)

where Jp is the radiative heat flux. Contrary to the case of conduction in which
the separation between flux and entropy generation is relatively simple, in the case

of radiation such separation is only clear in the limit of diffusive radiation (Mihalas
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and Mihalas, 1984). In any other radiative regime, this separation is not as simple,
because the interaction between the matter and the radiation over the range of fre-
quencies in the spectrum is quite complex. For instance, scattering processes in the
atmosphere may lead to non-local thermodynamic situations. Even if the interactions
are such that the atmosphere is in local thermodynamic equilibrium, it still could be
far from the diffusive regime. These complexities force us to treat radiation as an
external source of entropy whose value can be positive or negative, and is given by
equation (3.48). Unfortunately, treating radiation as an external source has the dis-
advantage of requiring the value of this source at every point in the control volume.
This is the reason that even though conduction and radiation are mathematically
very similar, we do not treat conduction as an external source of the system.

Collecting all its elements, the budget equation for the entropy can be written as

1
ida— [ SVInt [ podv (34
i da— | o R+ PO Vo (3.49)

d 1
d J :_?5[ D, +-J
dt/vps v s P Vet De e

Using the fixed-control-volume technique (section 2.2), we arrive at the governing

equation of entropy in flux form

d(ps) 1 1
AT V& D, + =Jo]+ =V-Ip = :
o T [psv+Ds+ dol + 5 Vedr = po (3.50)
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Chapter 4

Explicit relationships

In the rest of this work, we will assume that the internal energy and the entropy per
unit mass depend only on temperature, pressure and moisture. In this chapter, we

present explicit expressions for these variables.

4.1 Internal energy

We define the internal energy per unit mass of the jth component in a multicomponent

fluid as

uU; = CU]'T]‘ + Uy (41)

where ¢,; is the heat capacity at constant volume, 77 is the absolute temperature, and
up; 1s a constant of integration. This definition is quite general and can be used with
gases as well as liquids and solids. Note, however, that for condensed matter there
is almost no difference between heat capacities at constant pressure and constant

volume in the atmospheric range of pressures.
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The constants of integration in the internal energy definition are in general dif-
ferent for each of the components. Even so, the cloud condensate and liquid water
The same is true for cloud ice and ice precipitation, which make up the solid phase.
Furthermore, the integration constants for all water phases are not independent. This
is because there are well defined energy gaps that separate the different phases of the
water substance. Therefore, in order to obtain an explicit expression for the internal
energies, we must find the relationships among the integration constants that appear
in the internal energy definition. For such purpose, we use the enthalpy function,
which is closely related to the internal energy. The reason for using the enthalpy is
that, by definition of latent heat, the difference among the enthalpies of the water
phases is equal to the latent heat release during the transformation from a less to a
more ordered phase. That is, if h,, h;, and h; are the vapor, liquid, and ice enthalpies

per unit mass respectively, then

hy —hi = Ly(T) (4.2)
hy —hi = Ly(T) (4.3)
hi—hi = Ly(T) (4.4)

where the temperature 7' is the absolute temperature at which the transition occurs
and L,(T), Ls(T), Ls(T) are the latent heats of vaporization, sublimation, and fusion
at temperature T', respectively.

The relationship between the internal energy and enthalpy per unit mass is

h]‘ = uj —|— PJ'Q/]' (45)

33



which for ideal gases can be written as

h]‘ = u]‘ —|— RJ‘T]‘ (46)

where R; = R,/ M is the gas constant of the jth gas; R, is the universal gas constant
and M is the molecular mass of that gas. As it stands, it seems that this definition
of enthalpy cannot be applied to liquids and solids. However, we know that there
is no difference between internal energy and enthalpy for the condensed cases for
atmospheric conditions. So, equation (4.6) can be applied in such cases by setting
the gas constant to zero. Using the definition of internal energy, equation (4.1), in
equation (4.6) results in

h]' = ijT]' —|— uoj (47)

where the heat capacity at constant pressure is defined as

Cp]' = CU]‘ —|— RJ‘ (48)

Again setting R; to zero would result in the expected behavior for liquids and solids,
where there is no difference between the two heat capacities.

It would be convenient to write the integration constants in terms of the temper-
ature and pressure at some arbitrary reference point. Calling 7, and P, the absolute
temperature and pressure at the reference point, then the enthalpy at the reference
point is given by

hm' = ijTr + Ugpj (49)
Therefore, the enthalpy can be written as
hj = cpi(T; = T}) + ho (4.10)

34



Hence, equations (4.2-4.4) imply that at the reference point

hyt = hpw— Lo(T)) (4.11)
hei = hpw— Ly(T}) (4.12)
hyi = hy— Ly(T)) (4.13)

Unfortunately, only two of these equations are independent, which leaves one of the
reference constants undefined. Nevertheless, these are the relationships that must
be satisfied by the reference values of the water-substance enthalpies. Choosing the
reference value of the enthalpy of ice as the arbitrary constant fixes the reference
values for all water phases. On the other hand, the reference constant for dry air is
independent of them. So, the enthalpy for the jth component in the fluid is given by
equation (4.10) where the reference constants for water vapor and liquid water are

given by
hew = Ls(T.) + hei (4.14)
he = Le(T,)+ hy (4.15)
respectively; and the reference values of the enthalpy of ice, and dry air, at the

reference point are arbitrary. These results can be translated into internal energies

using equations (4.6) and (4.8), resulting in

wi = coa(Ti—T.) + (4.16)
wy = enl(Ty—T0) + up (4.17)
w = alTi—T,) + uy (4.18)
wi = &(Ti—T.)+ up (4.19)
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where the reference constants are given by

Urg = hra— R4, (4.20)
Upy = hpy — R, (4.21)
urp = hpy (4.22)
Ui = D (4.23)

The internal energy per unit mass of the fluid as a whole may be written as

u = qacwd(T —T,) + upg]
+ qlen (T = T7) + ur]
+ qala(T —T,) + uy
+ qeilei(T — T,) + ur
+ gula(Ty = T,) + ]

+ @ilei(T; = T0) + uyi] (4.24)

where g4, ¢y, eis Geiy Gpi, Qi are the partial concentrations of dry air, water vapor,
cloud liquid, cloud ice, precipitating liquid water, and precipitating ice; we also have

assumed a common temperature for all components except precipitating condensate.

4.2 Kinetic energy

The kinetic energy of the system per unit mass is defined as

1
K = EZ pik; (4.25)
J
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where k; is the kinetic energy per unit mass for the jth component, which is defined

as

1
k]' = §Vj . Vj (4.26)

where vj is the average velocity of the jth component.

4.3 Potential energy
The potential energy of the system per unit mass is defined as
o1
b= d_pPid; (4.27)
J

where ¢; is the potential energy of the jth component. We assume that the only
potential energy in the system is due to the gravitational field, so that, the potential

energy of the jth component is given by

b =gz (4.28)

where ¢ is the acceleration of the gravity and z is the altitude above sea level. There-

fore, the total potential energy per unit mass reduces to

b=gz (4.29)

4.4 Bernoulli function

The Bernoulli function per unit mass for the system was defined in equation (3.35).

Using the state equation for the ideal gases and the definition of total energy, the
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Bernoulli function can be written as

1

b = - pib; (4.30)
P
1
= ;Zpg‘(eﬂrpj%) (4.31)
J
1
= = pile;+ RiT)) (4.32)
P
= 6—|—Eq]'R]'T]‘ (433)
;

where g; is the concentration of the jth component. Recalling that the gas constant
for the condensed phases must be set to zero, and that the gaseous components share

the same temperature, T', the expression for the Bernoulli function can be written as

b=e+T(qiRq+ q.R,) (4.34)

4.5 Entropy

We define the entropy per unit mass of the jth component in a multicomponent fluid
as

sj = ¢pjlog(T;) — Rjlog(P;) + so; (4.35)

where T; and P; are the absolute temperature and pressure of the component, ¢,; is
its heat capacity at constant pressure, R; is the gas constant, and sg; is a constant of
integration. As with the definition of energy, for the entropy we set the gas constant to
zero for all condensed phases. Also, the integration constants in the entropy definition
of the water phases are not independent. In this case however, it is because the water

phases must satisfy certain conditions when they are in thermodynamic equilibrium.
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Let us first rewrite equation (4.35) in terms of the entropy value at some arbitrary
reference point. Call T, and P, the temperature and pressure at the reference point.

Then the entropy at the reference point is

Sp; = cpilog(T,) — Rjlog(P,) + so; (4.36)

Substituting the integration constant back into the entropy definition results in

sj = ¢pilog(15/1,) — Rjlog(F;/ F) + srj (4.37)

Now, in order to obtain the relationships among the reference constants in the expres-
sion for the entropy of the water phases, we need to analyze the equilibrium conditions
between water phases. These conditions are that the temperature and pressure, as
well as the chemical potentials, of the coexisting phases must be equal. The chemical

potential of the jth component is defined as

pj = h; —s;T; (4.38)

where h; and s; are the enthalpy and entropy per unit mass, respectively; and 7 is
the absolute temperature.

Let us first analyze the equilibrium between water vapor and liquid water. For
vapor to be in equilibrium with liquid water, the vapor must be saturated. Call
s5(T, Pr) the entropy of water vapor at saturation, where P* is the saturation vapor
pressure; the entropy of liquid water at temperature T' is s;(T'). The enthalpies of

water vapor and liquid water are h,(T') and hi(T), respectively. The condition for

equilibrium at temperature 7' can be written as

ho(T) = T sX(T, P) = hy(T) — T s,(T) (4.39)
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Using the definition of latent heat of vaporization, equation(4.2), we obtain

L,(T)

(1) = sy, Py - oL (4.40)
Since
si(T, Pr) = ¢p log(T)T,) — R, 1og( P/ P.) + $ry (4.41)
and
st = ¢ log(T]T,) + s (4.42)
evaluating equation (4.40) at the reference point results in
L, (T,
Spl = Sppy — # (4.43)

which is the relation between the liquid water and water vapor reference entropies.

Similar procedures lead to the relationships between the ice and water vapor

Ls(T,
Sri = Sy — ( ) (444)
T,
and between liquid water and ice
LT,
Spi = Syl — f; ) (4.45)

where Ls(T,) and L¢(T,) are the latent heats of sublimation and fusion, respectively.
Again, only two of these relationships are independent leaving one of the reference
constants undetermined.

A general relationship between the liquid water and water vapor entropies can be

obtained by noting that

(T, P) = s,(T, P) + R, log(H)) (4.46)
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where Hj is the relative humidity with respect to liquid water,

b,

With equation (4.46) in (4.40), we have

L(T)

si(T) = s,(T, P) + R, log(H;) T

(4.48)

as the general relationship between the liquid water and water vapor entropies.
A similar relationship between ice and water vapor entropies can also be obtained,

namely,

Ly(T)
T

si(T) = s(T/T,) + R, log(H,) — (4.49)

where Ls(T') is now the sublimation latent heat and Hj is the relative humidity with
respect to ice.

The entropy per unit mass of the fluid as a whole may be written as

s = qa(cpalog(T/T,) — Rylog(Pi/P.) + $r4)
+ qu(cpp log(T)T,) — R, 1og( P,/ P.) + $rv)
+ qalclog(T/T,) + su)
+ qei(cilog(T/T,) + $ri)
+ Go(cilog(T1/T.) + s11)
+ qpi(cilog(Ti/Ty) + s,i) (4.50)
where g4, qu, qei, qeiy Gpis Gpi are the partial concentrations of dry air, water vapor, cloud

liquid, cloud ice, precipitating liquid water, and precipitating ice. We have assumed a

common temperature for all components, except for precipitating condensate terms.
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This expression has two undefined constants: the reference values of the entropy of
dry air and water vapor.

In order to compare this expression to others found in the literature, we reduce
it to the case where there is only dry air, water vapor and cloud liquid water in the
atmosphere. All components are assumed to have the same temperature. Thus, the
entropy reduces to

S = {4354 + quSv + GelSel (451)

With the help of equation (4.48), this last equation can be written as

L,(T
S =qqSq+ qu (Scl — R, log(H)) + f; )) + qeiSel (4.52)
Regrouping terms, we have
L,(T
5= qqsd+ (qu + qa) S + @ (—Ru log(H;) + ; )) (4.53)

Now using the definitions for dry air and liquid water entropies plus some algebra,

we have

ry Ly(T)
T

+ (Spa 4 18] (4.54)

s=qqllcpa +ric)log(T/T.) — Rylog(Pyi/P.)—r, R, log(H;)+

where we have defined r; = (¢, + 1)/ qa as the total water mixing ratio and r, = ¢,/qa
as the water vapor mixing ratio.
Many authors argue that the entropy, which for this particular system is called

“moist entropy”, is a conserved variable. Thus, they define moist entropy as

ro Ly (T)

s = (cpa+ryc)log(T/T,) — Ry log(Py/P.) — ry, R, log(H;) + 7

(4.55)
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which is correct if the total mass fractions of dry air and water vapor can be regarded
as constants. This may be appropriate for the analysis of closed parcels. Otherwise,
the last term in equation (4.54), ( S,q + r+S;, ), and also the factor g4, turn out to be
important. A simple example is the retrieving of the atmosphere’s entropy profile
from a sounding. In such a case, the total mixing ratio of water is changing all the
way from the surface to the tropopause. Note that the form of such profiles depends
on the reference values of the dry air and water vapor entropies.

Since usually equation (4.55) represents all liquid water, it could misrepresent the
entropy of precipitation liquid water, which may not be at the same temperature as
the cloud liquid water. We believe that equation (4.50), which by the way includes
ice processes, is an improvement over equation (4.55) in representing the entropy in

the atmosphere.
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Chapter 5

Tendency equations

In this chapter, we use the budget analysis technique to estimate the tendencies —
that is, the time rate of change — of the average values of total water, total energy,
and entropy. This technique consists in the integration of the differential governing
equations in a particular control volume. We do this integration over a cylinder that
extends from the surface to an upper boundary whose altitude is high enough to hold
all possible convection beneath it. Its lateral boundary is also loosely defined, but it
has to be large enough to enclose convection, see figure (5.1).

Calling any of our density variables v, then the time rate of change of the average

value of 1 over the control cylinder is defined as

o= ilam o ] e

where A is the horizontal area of the control cylinder, H is its height, and V is its
volume.

In order to make this integration possible, some approximations are in order: The
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Figure 5.1: Sketch of a typical control volume used in this work.

horizontal velocity of cloud condensate will be regarded as equal to the horizontal
mean velocity of the fluid; this is a standard assumption made in radar meteorology
(Doviak, 1984).  Note that the vertical velocity of the condensate can still be very
different from the mean flow velocity, especially at the lower boundary. At the upper
boundary we assume that no flux of matter can exist: basically this is the definition
of the upper boundary. Regarding heat fluxes, we assume that all radiative and
conductive heat fluxes are uniform at each of the three boundaries of the cylinder; we
assume no heat conduction through the upper and lateral boundaries as well as no
horizontal radiative fluxes. We also assume uniform temperatures at the lower and

upper boundaries.
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5.1 Water substance

Using basically the fixed-control-volume technique (2.2) in reverse order, we can in-

tegrate the total water governing equation in the control cylinder as follows:

d
4 wd:—fw D,)-h d 2
= pu dV = =4 (puvi+ Do) i da (5.2)

Dividing the surface integral into the three parts that make up the cylinder’s area
(bottom, top, and lateral boundaries) and applying the assumptions of no matter-
flux whatsoever through the upper boundary, no diffusive flux of matter through the

lateral boundary, and no mean flow of dry air through the lower boundary, results in

d
E/V,ow v = —{ [ puvaiudat [ Dy, da} (5.3)

bott

where fi; and f; are the unit vectors pointing outward from the volume at the lateral
and bottom surfaces, respectively. Since at the bottom surface the only diffusive

fluxes are due to evaporation and precipitation (ice and/or liquid), we have that
Dw : ﬁs - (,O’UVD’U + PplVDpl + pinDpi) . ﬁs (54)

where the subindexes v, pl, and pi refer to vapor, liquid precipitation, and ice pre-
cipitation. Since the mean value of the dry air vertical velocity is zero at the surface,
the diffusive flux of vapor at the surface is, by definition, just the evaporation rate,
&, and the total diffusive flux of precipitation is just the precipitation rate of liquid

water, Py, plus the precipitation rate of ice, P;. Hence, we have
D, f,=—E+P +P; (5.5)

The minus sign in front of the evaporation rate is due to fact that evaporation is

defined as going into the atmosphere and the normal to the surface is pointing out
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of the atmosphere. With this result and the definition of the average value of water

substance, equation (5.3) can be written as

dpm 1

o - — (—E+Pi+P) da} (5.6)

{ puwVq -0y da+
lat

bott

5.2 Total energy tendency

In a very similar way, we can write a tendency equation for the average total energy

inside the control cylinder:

dpe —1 .
T AUt 3w =T ) da
+ (JR¢—|—JVV—;>-V)'IA{ da
top
+ [ PrstIo+Dy— (7 v)] (-K) da} (5.7)

where k is the unit vector in the z direction. Other symbols are defined in section
(3.7).
Call
=1 f ¥.ov-hd (5.8)
= ) 7 . .
g hy v nda
the total energy dissipated by frictional stress at the surface of the control cylinder,
and
W= — ]{ Jw-dd (5.9)
AR R '
the total energy flushed out of the control cylinder by wave action. Then equation

(5.7) can be written as

dpe —1 «
D — bvy- -1y d Jr:-k d
dit Ax H { lat poOV T ad + top Rt “

+ [ (Ine+30+Dy)-(—k) da} YLEW  (5.10)

bott

47



Since the diffusive flux of the Bernoulli function at the surface can be written as

Dy (=k) = (puby vy + ppi bt VDot + ppi byi Vi) - (—K) (5.11)

= —Ebyy+Pibup+ Pibyip (5.12)

where &£, P;, and P; are the evaporation, liquid water, and ice precipitation rates,

respectively, the tendency equation (5.10) can be written as

dpe 1 . -
T A Ut dat [ Jnk do
+ | {(JRS +30) - (=k) = Ebyy + Prbys + P bpi,b} da}
ott
LW (5.13)

where b, , by s, byip are the Bernoulli functions of vapor, liquid precipitation and ice
precipitation at the bottom surface, respectively. Note that the Bernoulli functions
for the condensed phases are the same as the total energy of those phases. This is so

because the internal energy and the enthalpy are the same in those cases.

5.3 Entropy tendency

Integration of the entropy governing equation over the control cylinder leads to the

following tendency equation for the average entropy:

dp_s _ —1 { A d
Al AH U PPV
J R
+ /b [TC . (—k) — 55%5 + 731 Splb + /PZ Spi,b] da} + R + g (5-14)
ott s
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where S, 4, Spip, Spip are the entropy of vapor, liquid precipitation and ice precipita-
tion at the bottom surface, respectively;

~1 /1
—V-Jp dV (5.15)

R=TuhT

is the average change in entropy due to radiation; and

1
G= ﬁ/\/pa v (5.16)

is the average irreversible generation of entropy inside the control cylinder; the tem-
perature distribution at the bottom surface is Ts. Other quantities are defined in

section (3.8).

5.4 Getting rid of precipitation

In order to make estimates of the tendencies presented in the previous sections, we
need among other things the distribution of precipitation at the surface. Aside from
the estimation of the sources £, W, and G, precipitation is the most difficult variable
to estimate from field data. It is so uncertain that most attempts to estimate it have
error bars somewhere between 50 and 150 percent. This is in fact the basic limitation
that precludes the use of the total water tendency equation by itself to examine the
drying/moistening effects of convective clouds on their environment.

Here, we present an alternative method that eliminates the necessity of knowing
the precipitation distribution so long as there is no ice precipitation reaching the
surface. This is a reasonable assumption in the deep tropics. Other required as-

sumptions are that temperature and pressure are constant throughout the bottom
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surface and that the kinetic energy is much smaller than the internal energy at the
surface. Given these assumptions, then the total energy as well as the entropy can
be considered constant at the bottom surface of the control cylinder.

Multiplying the tendency equation for total water (5.6) by b, and subtracting

the result from the tendency equation of total energy (5.13), we obtain

(pbvd — pwbphbvd) . fll da + JRJ‘ . f{ da

top

d(pe — pubup) —1 {/
dt AH Ut

[ [@as+30) - (—R) = Ebus — b)) da}

bott

LW (5.17)

which can be written as

dple —queps) _ —1 i .
di = E{Ltp(b_qwbm’b)‘/d‘nl d(l—l— topJRJ‘k da

+ Kmﬁ+J@.¢£y_amb—@wﬂcm}

bott

LW (5.18)

where ¢, is the mass fraction of total water, and we have used the fact that the
total energy and Bernoulli function are the same for condensed matter, so by, = €p1p.
Defining the new variables

€=€— Gueplp (5.19)
T=5b— wapl,b (520)

results in a new governing equation.

pYvy-h da+ | Jp, -k da

top

i Ly
dt  AH Ut

- ﬁhm+hg£+g@w—@@}m}+z+w (5.21)

bott
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Two things are notable about this governing equation: 1) It does not depend on
precipitation. 2) Its source term is the same as that for the total energy.
Similarly, multiplying the tendency equation for total water by s, 5, and subtract-

ing the result from the tendency equation of entropy (5.14), leads to

dps —1{ o
At AH UV

Jo -

- [,—C k4 E(sup — spz,b)] da} +R+6 (5.22)
bott | L'

where

S =8 — GuSpp (5.23)

The governing equation for this new variable does not contain precipitation and its

source is the same as that for the entropy.
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Chapter 6

Moistening and drying tendency

equations

We have derived tendency equations for the average energy and entropy of the atmo-
sphere. We have shown that in the case of no ice precipitation reaching the surface,
those equations can be modified in such a way that they do not depend on precipita-
tion. As long as the gradients in temperature are small and we are able to estimate
all fluxes involved plus the corresponding source terms, each of these modified ten-
dency equations can be used to study the moistening or drying of the environment
by convective clouds. However, it turns out that the estimation of the sources of
energy and entropy are probably more difficult to estimate than precipitation rates.
Nevertheless, it is the purpose of this chapter to show how the modified tendency
equations can be used to distinguish moistening from drying environments without
the necessity of knowing the energy or entropy sources.

Let us begin by representing all the terms that can be estimated from field data
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on the left hand side of (5.21) and (5.22) by Fyate and Sgeta, respectively. That is,

-1 .
[P —— Ty, fy d Tp, Kk d
dat AH{ Iatp Va i a—l_ top Rt ¢
— [ [@ro+Jc) -kt Elbus — bys)] da} (6.1)
Siare = _1{ vy By d
data = AH Iatps Vg -1y da

Jo - 1
Y S da+ [ 5:9-3n d 2
- [Ts + E(sup sz,b)] at | 7V-Ir V} (6.2)

Therefore, equations (5.21) and (5.22) can be rewritten as follows

doE

pe = Edata + L + 4% (63)
dit
dp<

ata 4

i Sdata + G (6.4)

We argue that the source of entropy, G, is always positive, because it represents
the internal generation of entropy for a system that is not in equilibrium. On the
other hand, we argue that the source of energy, £, must be negative, because it
represents the viscous forces acting on the boundaries of the control cylinder. The
wave energy source, W, is also negative under the assumption that all waves are
created by convective activity inside the control cylinder. That is, the dynamical
response of a less active environment consumes energy from the convection.

Given these assumptions, a situation where Fy,, is negative implies that dpe/dt
is also negative. On the contrary, positive values of F4,;, leave the sign of dpe/dt un-
determined. Thus, the modified energy equation tells us whether drying is occurring
in the control cylinder, but it cannot give a conclusive answer about moistening situ-
ations. Positive values of Sj.14, on the other hand, imply that dpc/dt is also positive,

while for negative values of Sy,:, the modified entropy equation is not conclusive.
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As a result of this analysis, the modified energy equation can be used to identify
situations when drying is occurring. We call this equation “the drying tendency
equation”. The modified entropy equation, on the other hand, can be used to identify
moistening situations. We call it “the moistening tendency equation”.

From the point of view of the data available to make the estimations of the dif-
ferent terms in the modified equations, we know that: radiation fluxes are relatively
simple to estimate, as well as evaporation and conductive heat fluxes which can be
parameterized in a simple fashion using surface data. On the other hand, good esti-
mations for fluxes through the lateral boundary due to different kinds of convective
activity are much more difficult to obtain. This is because typically those estima-
tions come from sounding arrays which only are able to measure the net effect of
the environmental plus all the convective activity inside the array. Good estimates
of lateral fluxes are required to solve the budget equations, and therefore, they are
crucial in understanding the nature of moisture interchange between clouds and their
environments. Even though we need all terms except the sources to reach a definite
conclusion about the influence of a convective system over its environment, under-
standing the moisture tendency due to individual terms is also valuable.

Given their importance, and the kind of data available to us, we will focus on the

lateral contributions to the modified budget equations.
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Data Analysis &
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Chapter 7

Data Sources

In this part, we use the theory developed in part I and the radar analysis techniques

of section B.4 to address the scientific questions posed in the introduction:

e [s there a correlation between cloud-top and environmental moisture on a case-

by-case basis ?

e What is the nature of the moisture interchange between clouds and environ-

ment?

Our data analysis is restricted to a limited region over the western Pacific and in-
volves many assumptions. Therefore, it only offers an approximate answer for these
questions. Far from being general, the results could be regarded only as an example
of application of the theory developed in part 1. Nevertheless, they strongly suggest
the role of different convective regimes on the atmospheric moisture budget.

For our analysis, we use several data sets collected during the field phase of TOGA-

COARE (Webster and Lukas, 1992). This phase of the experiment took place from 1
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November 1992 to 28 February 1993, over the western Pacific warm pool. This region
is characterized by sea surface temperatures that exceed 28°, and extends approxi-
mately from 10°S to 10°N and from 140°E to 170°E. (See figure 7.1.) During these
four months, many kinds of measurements were made from a variety of platforms. Of
primary importance to us are the Doppler velocities measured by the X-band Doppler
radars mounted on the tails of the two National Oceanic and Atmospheric Adminis-
tration(NOAA) WP-3D aircraft. Also crucial to this work are the flight level in-situ
data collected by the WP-3D aircraft. These data are scientific and navigation fields
sampled at a 1 Hz rate along the flight track. We use the wind speed and navigation
parameters from these fields during our Doppler synthesis. The thermodynamic fields
collected during flights are not used; instead, the thermodynamic structure for the
whole depth of the troposphere is obtained from balloon soundings launched from the
R/V Moana Wave , R/V Xiangyanghong 5 , R/V Shiyan 3 , and Kapingamarangi
station. We also use images of the infrared brightness temperatures from the GMS-4
Japanese satellite (Flament and Bernstein, 1993). These images are used primarily
for providing a context for the analysis, and in particular they help in the selection
of the sounding used in the calculations of each case study. We focus our analysis on
ten case-studies observed during TOGA-COARE. Table 7.1 lists the selected data for
these cases. In chapters 8 and 9, we discuss how the raw data from soundings and
radars were prepared before we use them to address the posed questions, which are

tackled in chapters 10, 11.
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Figure 7.1: Area studied during the field phase of TOGA-COARE, including
the primary sounding sites. The intensive flux array (IFA) is formed by the
vessels Shiyan 3 and Kezue, and the islands of Kapingamarangi and Kavieng.
Most of our sounding data come from this array.  However, we also use
soundings from the R/V Moana Wave and Xiangyanghong 5 (not pictured) which
were working also close to the TFA. All aircraft missions were flown inside the
large scale array (LSA) — most of them very close to the IFA. WP-3 aircraft
flew from Honiara toward their target region and back to Honiara. Figure

adapted from the station map in TOGA-COARE project description. Available:

http://www.joss.ucar.edu/data/toga_coare
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Table 7.1 Data Sources

Mission  Platforms AD  Data Selected Times  System Velocity
BS ACR LT RTI Ve Vi

(km) (UTC) (UTC) (ms™) (ms™)

921126 SH W43 250 -0115  0338-0636 0.00 -3.00

921128 MW W42 20 0441  0352-0445 -2.82 2.82

921212 KP BWP 665 1706 1747-1826 2.12 -2.12

921213 KP W43 435 1656  1826-2041 0.00 10.00

921215 XY W42 160 1714 1713-1837 -4.90 -4.90

930111 MW W42 75 2255 2256-2520 2.80 2.80

930116 SH W42 200 2302 2311-2430 9.00 0.00

930118 SH W43 350 2300  0211-0355 3.50 -3.50

930201 MW W42 70 2257 2251-2351 -7.70 7.70

930209 XY BWP 505 1646  1632-1841 -4.20 -4.20

Table 7.1: Information about the data sources used in this work. The following are
the meanings of the labels. BS = Balloon sounding: SH = R/V Shiyan 3 ; MW =
R/V Moana Wave ; XY = R/V Xiangyanghong 5 ; KP = Kapingamarangi. ACR
= radar data: BWP means both WP-3D aircraft. AD = Average distance between
soundings and aircraft target area. LT = Balloon launching time; RTI = selected
time intervals for Doppler analysis in each mission. The Cartesian components of
the system velocity were calculated from the values reported in Kingsmill and Houze

(1999) — they are positive in the east (V) and north (V) directions.
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Chapter 8

Soundings

For each case study, we choose a single sounding launched close, both in space and
time, to the studied region. In every case, special effort was made to avoid soundings
that might already have been affected by the cloud system, as judged by the sound-
ings’ position with respect to the cloud system. This was made by visual inspection of
plots where the sounding location, aircraft’s target region, and infrared temperatures,
were laid together. Figure 8.1, which shows the case of January 16, is an example of

Tand

this kind of plot. For this case, the system was moving toward the east at 9 ms~
the sounding location appears to be ahead of the system. Table 7.1 lists the selected
soundings for each case study.

The primary sounding data used in our analysis are: total pressure (F;), environ-
mental temperature (7¢), dew point temperature (7y), altitude (z), and horizontal
wind speed (vy,). These measurements are used to estimate profiles of three key func-

tions in our work: moist energy (¢), moist entropy (<), and the Bernoulli function

(T), plus their saturated values. These functions are defined by equations (5.19),
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Figure 8.1: Relative location between sounding and the aircraft target area for the
case of January 16, 1993. The system was moving toward the east. The background
shading is the infrared brightness temperature from the GMS-4 Japanese satellite
taken at 2315 UTC. Infrared temperatures are in degrees Celsius. The dashed polygon
represents the intensive flux array(IFA), while the target area is enclosed by the
rectangle. The aircraft path (thin-solid line) reached the target area approximately at
2300 UTC. The sounding was launched at 2302 UTC by the Shiyan 3 (solid diamond

at the most right corner of the IFA and ahead of the system).

61



(5.23), and (5.20), respectively.

In addition to these key functions, the soundings are used to estimate surface
parameters and the temperature at the upper surface of the control cylinder (chapter
5). Some of the constants required in our calculations are listed in table 8.1.

The estimation of our key variables and surface parameters requires an estimation
of the concentrations of the different components and their saturated values. Since
balloon soundings do not contain any information about precipitation, we assume
that they were made in clear air. Therefore, the only components of the atmosphere
seen by the sounding instruments are dry air and water vapor. In this case, the
total water concentration (gq,) is reduced to the water vapor concentration, and the
concentration of dry air (g4) and water vapor concentration (¢q,) are related by the
equation ¢4 + q, = 1. Therefore, we only need the water vapor concentration and its
saturated value ¢F. These two quantities are obtained from the sounding primary

data using the equations

GP:(TC[)
= Bt (- DP(Ty) (8.1)
T = by (1) (8.2)

P+ (e —1)P;(T.)
where ¢ = R;/R, is the ratio of the gas constants of dry air to water vapor; and
P*(T) is the saturated vapor pressure at temperature T'. It should be pointed out
that saturation above freezing level is taken with respect to ice, while below this level,
it 1s taken with respect to liquid water. Thus, we have chosen to approximate the

saturation vapor pressure by using Bolton’s formula below the freezing level, and by
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Table 8.1 Constants

Symbol  value units Description
T 30 C Sea surface temperature
C, 1073 Transfer coeflicient
w 2 ms™! Wind gustiness correction
Trw 273.15 K Reference temperature for water substance
P, 6.112 hPa Reference pressure for water substance
T.q 273.15 K Reference temperature for dry air
P 1000 hPa Reference pressure for dry air
hyrq 0 Jkg™! Reference value for enthalpy of dry air
Urd 0 Jkg™! Reference value for energy of dry air
Spd 0 Jkg!' K=!  Reference value for entropy of dry air
P 0 Jkg! Reference value for enthalpy of ice
Up 0 Jkg™! Reference value for energy of ice
Spi 0 Jkg ! K=!  Reference value for entropy of ice

Table 8.1: The constants in this table were arbitrarily chosen. Other constants used
but not listed here, such as the latent heat at the reference points and the heat

capacities, were taken from Emanuel (1994).
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Smith’s formula above this level:

6.112exp(17.67(1 — 273.15)) /(1" — 29.65) T < 273.15K

PX(T) = (8.3)

exp(23.33086 — 6111.72784/T + 0.152151log(7T")) T > 273.15K

These formulas were taken from the book by Emanuel (1994), but the constants were
modified, so the temperature, T', here is expected in degrees Kelvin. This equation
gives the saturation vapor pressure in hecto-Pascals when T is the environmental
temperature. On the other hand, by definition of dewpoint temperature, evaluating
the above formula at the dewpoint gives the environmental vapor pressure.

Expressions of the key variables (moist energy, moist entropy, and the Bernoulli
function) and their corresponding saturation deficits are derived in appendix A. The
saturation deficit, which is a measure of the moisture in the environment, is plotted
in figure 10.2.

Surface parameters are defined as their average over the first 20 m of the sound-
ing. The temperature for the upper surface of the control cylinder is defined as the
temperature corresponding to the minimum temperature in the sounding data. All
these parameters are listed in table 8.2.

In order to combine sounding information with the results of the radar analysis,
once all derived variables are estimated from the raw sounding data, the soundings
(originally in their native resolution) are interpolated to 21 regularly spaced heights

from the surface to the 20 km.
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Table 8.2 Upper and Lower Boundary Parameters

Mission  Top Surface Values
Date Tiop T p Gy P, Uess & Jeo
K K kgem™ gkg™! hPa ms™' kgm % s! Wm™?
x1075
921126 187.25 301.65  1.22 16.97 1008.5  6.60 7.76 12.32
921128 189.35 302.35  1.22 16.65 1009.5  3.39 4.10 3.37
921212 184.35 300.45  1.21 14.75 1000.4  5.08 7.38 16.81
921213 181.75 301.35  1.21 16.62  999.0 5.84 7.23 12.96
921215 182.75 299.95  1.22 17.22  1006.7  8.52 9.84 34.05
930111 189.55 301.25  1.22 17.05 1010.2  3.22 3.74 7.63
930116 188.55 301.85  1.22 18.98 1006.8  6.32 5.93 10.27
930118 187.25 300.35  1.23 19.23  1005.9  5.67 5.19 19.93
930201 193.05 301.95  1.23 19.27 1010.0 7.64 6.84 11.50
930209 191.05 300.95  1.22 17.96  1007.2  4.92 5.23 13.52

Table 8.2: T}, is the temperature at the top of the control cylinder; T', p, ¢,, P, and

U,y are the temperature, air density, vapor specific humidity, air pressure, and effec-

tive wind speed just above sea surface; £ and J¢ are the evaporation and conductive

heat flux from the sea into the atmosphere.
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Chapter 9

Mass Fluxes

Under the assumptions discussed in chapter 11 below, we may use the mass fluxes
from a cloud system to estimate the fluxes of energy and entropy through the lateral
boundary of a control cylinder that encloses the convection. Here we describe the
steps required to estimate mass fluxes of a convective system using radial velocities
sampled by a Doppler radar.

The first step to estimate the mass fluxes is the synthesis of the wind field from
the raw radar measurements. This field is synthesized using the technique presented
in section B.4. All cases presented here were processed in the following way: the flight
level in-situ data were low-pass filtered with a smoothing length of 100 s before apply-
ing the automatic unfolding algorithm to the radial velocities; sea clutter was elimi-
nated by discarding gates below 500 m; side lobe effects were reduced by eliminating
gates within a 2000 m radius from the aircraft; the radar data were then interpolated
to a Cartesian grid from the surface to the 20 km level with 5km x 5km x 1km grid

spacing to generate dual-Doppler estimates of the Cartesian velocities. (See figure
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Figure 9.1: Interpolation grid for the cases presented here. The vertical height is
always 20 km and the horizontal dimensions vary from case to to case in order to

acomodate all radar data collected during the period of interest.

9.1.) The grid is fixed in the cloud system reference frame whose translation velocity
was taken from Kingsmill and Houze (1999). Table 7.1 shows the information for
the flight segments used to synthesize the wind field in each mission; grided data were
discarded if the amplification of the error in Cartesian velocities due to the sampling
geometry was larger than 1. Additionally to this threshold, grid points whose asso-

ciated Cartesian speed was larger than 25 ms™!

were also discarded. The remaining
velocities were fed to the anelastic mass continuity equation to generate estimates
of the vertical velocities which were used to correct the dual-Doppler estimates of
the horizontal velocities. Although the seemingly artificial threshold on speeds is not

part of our regular interpolation technique, it is included here because histograms of

the speeds from all the grid points made after applying the threshold on geometrical
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Figure 9.2: Histogram of Cartesian speeds for the case of December 15, 1992. This
case corresponds to a deep convective system. All speeds from grid points where large

geometrical errors (greater than 1 — see text) were not included in the histogram.

Lare indeed outliers, most

errors (figure 9.2) indicate that speeds larger than 20 ms~
probably due to isolated unfolding problems. The grid spacing may seem too big for
the spatial resolution of the X-band radar measurements, which in the worst case is

about 300 m in the radial direction and 1.6 km along the track. However, this grid

spacing is still able to provide the major characteristics of the convective system, and
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it is sufficiently large to accommodate enough radar data to make a robust interpo-
lation. The characteristics and order of magnitude of the average mass fluxes do not
change when we halve the grid spacing for any or all directions.

In the next step, the wind field is objectively analyzed to fill in holes and generate
smooth mesoscale fields. Our objective analysis is performed as follows: An empty
grid of the same size as that holding the Cartesian data is created. The value of a field
(eg. reflectivity, velocity) at each point in this new grid is obtained by averaging all
values of the same field inside a horizontal circle centered at the corresponding grid
point on the original grid. For this average to be accepted, there has to be at least
a minimum number of grid points inside the circle holding good data values of the
field in question. If there are not enough good points, the value of this field is set to
“bad” in the new grid. The radius of influence used during the smoothing process of
the wind field was 30 km, and 15 good points had to be inside it in order to validate
a point. After the smoothing process, a column-by-column divergence correction is
applied. This correction is necessary because the objective analysis does not know
about the conservation of mass at each individual column. Appendix D shows how
this correction is done.

Finally, once the mesoscale wind field is obtained, the horizontal divergence, and
hence the detrained mass flux, can be calculated. From there the vertical mass flux

is obtained via the anelastic continuity equation.
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Chapter 10

System Top and Tropospheric

Moisture

We examine 10 cases out of the 25 where at least one WP-3D aircraft was present; see
table 7.1. We chose these ten missions because all of them exhibit a clear convective
behavior, judging from their vertical mass fluxes, and also because a sounding for the
whole troposphere was made close, both in space and time, to the studied region. For
this sample, we seek a correlation between cloud-system top height and tropospheric
moisture. For this purpose, we employed the soundings prepared using the procedure
given in chapter 8, and the mass fluxes obtained through the procedure described in
chapter 9.

Cloud-system top height can be estimated in various ways from radar measure-
ments. For instance, one method which has long been used is to simply take cloud-
system top as the maximum height at which reflectivity is detected. We choose the

maximum height of the average vertical mass flux as a surrogate for the cloud-system
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Figure 10.1: This figure shows the average vertical mass flux for the ten case studies
examined here. They are grouped according to environmental moisture and cloud top
height. Cases on the left panel correspond to small systems in dry environments. Tall
systems in dry environments are in the central panel while tall systems in a moist

environment are in the right panel.

top. Figure 10.1 shows the vertical mass fluxes for the selected ten case-studies. Since
radars can only sense precipitation-sized particles, the cloud-system top obtained from
radar measurements is always underestimated. Nevertheless, these measurements are
still able to distinguish among systems by height, which is our primary interest.
From among the possible quantities which could represent tropospheric moisture,
we have chosen the saturation deficits as measured by the difference between saturated

and environmental moist energy, and moist entropy. These quantities are related to
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the deficit in the mass fraction of water vapor (also known as the specific humidity),
by the equations (A.5) and (A.12), respectively. On the other hand, the variations
in such deficits are related to changes in moist entropy and energy, which (as shown
in part one) play a key role in understanding moisture budgets. That is, for a given
tropical environment, the saturated values of moist entropy and energy are constant;
therefore, we can assume that variations in the saturation deficits are due to changes
in the moist energy and entropy themselves. Actually, this is the reason for using
these saturation deficits.

As figure 10.2 indicates, most of the moisture variability in the troposphere is
below 10 km with the largest variations at mid-levels ( 4 km ) and considerable
variation close to the surface. Since the sounding values at the surface are not very
reliable, we estimate the correlation in the layer from 1 kmto 10 km. Figure 10.3 shows
this correlation. Since the selected layer practically includes most of the variability in
the troposphere, this result indicates a quite good correlation between moisture in the
troposphere and height of the cloud-system. Table 10.1 lists the values of moisture
and height for these correlations as well as other characteristics of the cloud system
obtained from the radar analysis.

We also performed a search to find a layer over which the average of the moisture
correlates the best with the cloud-system top height. This search consisted in calcu-
lating the correlation coefficients among the 45 contiguous layers that can be formed
with the sounding levels from 1 to 10 km (recall that the soundings were previously
interpolated at 1 km intervals from the surface to the 20 km). The correlation co-

efficients between system-top height and moisture for the layers that give the best
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Figure 10.2: Vertical variation of the saturation deficits defined as the differences
between saturated and environmental moist energy (left), moist entropy (center),

and specific humidity (right), for all missions in this study.
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Figure 10.3: Correlation between system-top height and three measures of tropo-
spheric moisture: In the left panel the moisture is represented by the moist-energy
saturation deficit (d¢), in the central by the moist-entropy saturation deficit (d¢), and
in the right by the specific-humidity saturation deficit (d¢,). In each case the satura-
tion deficit is average over a layer extending from 1 kmto 10 km. The corresponding

correlation coefficients for each case are given at the top of each panel.
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Table 10.1 Tropospheric Moisture and System Characteristics

Mission de o< 8q, ZLtop Aoz D

Date  (Jkg™') x10®° (Jkg7'K™') (gkg™') (km) (km®) x10* (km)

921126 6.3873 24.0865 2.7942 19 78 3
921128 7.0624 27.1379 3.0913 8 8 3
921212 4.9382 18.6381 2.1534 19 30 7
921213 3.6681 13.8431 1.6041 19 51 7
921215 3.8184 14.2737 1.6704 18 36 7
930111 6.7995 26.0622 2.9783 12 17 2
930116 5.4361 20.9315 2.3899 20 29 4
930118 5.8594 22.4501 2.5759 17 40 2
930201 7.6272 28.7188 3.3477 10 30 1.5
930209 5.3980 20.1619 2.3633 20 58 8

Table 10.1: For each mission, the moisture in the environment is estimated using
sounding data. Columns dz, d¢, and dq, represent the average value from 1 km to 10
km for the saturation deficits of moist energy, moist entropy, and specific humidity,
respectively. This table also shows some characteristics of the convective system
obtained from the radar analysis: system-top height (Z:,,); maximum horizontal

area of the system (A,,.;); and depth of the inflow layer (D).
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Table 10.2 Best Correlations

Layer (km ) de v.s. Ziop 05 Vs, Ziop  0Gy V.S, Ziop

3- 5 0.7620 0.7680 0.7620
45 0.7520 0.7560 0.7520
2-10 0.7440 0.7460 0.7420
2-9 0.7420 0.7440 0.7410
1-10 0.7360 0.7420 0.7350

Table 10.2: The first column shows the layer over which the average of the corre-
sponding saturation deficit was taken. The rest of the columns show the correlation

coeflicient for each correlation.

five results in our search are shown in table 10.2. These results show slightly better
correlations with moisture at mid-levels, suggesting that the “moisture” interaction
between clouds and environment is slightly favored at mid-levels. The correlation
between cloud-system tops and mid-level moisture has been reported before in the

literature; see for instance Brown and Zhang (1997) and Lopez-Carrillo and Raymond

(1999).
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Chapter 11

Lateral Export

In this chapter, we present a way to estimate the lateral export of moist energy and
entropy using sounding and radar data.

Define x to be either the moist entropy or the moist Bernoulli function. As shown
in section 5.4, the export of these quantities through the lateral boundaries is given
by

pXVq -0y da (11.1)

lat

where p is the air density and v, is the dry air mean flow velocity. The integral is over
the lateral boundary of the control cylinder, which should be big enough to include

the convective system. This equation can be written as

H
/ ]fvad Ay dl de (11.2)
0 c

where the contour integral is over the curve ¢, which is the intersection between the
lateral boundary and a horizontal plane; the z-integral extends from the sea surface

to a height larger than the cloud-system top (see figure 5.1).
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To estimate the value of this integral, we made the following assumptions:

1. The lateral boundary is far enough from the system to not be thermodynam-
ically affected by the system. On the other hand, it is close enough that it

responds dynamically to the presence of the system.

2. The convective system is the only source of divergence inside the lateral bound-

ary.

3. Environmental values are homogeneous around the lateral boundary, so a sound-
ing profile at any location on this boundary adequately represents all environ-

mental characteristics at any other location over the boundary.

4. The horizontal velocity is the same for all components in the fluid.

The first assumption represents a situation where convective transport of energy and
entropy have not had enough time to reach the lateral boundary, but on the other
hand, gravity waves have reached the lateral boundary and established the flow pat-
tern there. This assumption is generally satisfied as gravity waves travel much faster
than air parcels. Typically gravity waves propagate with speeds between 20 and 50
ms~!, while air flow velocities are between 0 and 20 ms™ . The second assumption
is not strictly satisfied. However, we can argue that the divergence associated with
a convective system is larger than the environmental divergence. The third assump-
tion is more difficult to sustain, particularly in reference to the moisture variability.
However as figure (10.2) indicates, most of the moisture variability is concentrated

below 10 km, with strong variations among the different cases at mid-levels ( 4 km ).
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Preliminary research (Lopez-Carrillo and Raymond, 1999) has shown that in a given
environment, the relative humidity at mid-levels is nearly uniform over 600 km, and
much of the remaining variation can be attributable to isolated rain showers. Fi-
nally, assuming that the horizontal velocities are the same for all components is the
standard assumption in radar meteorology. Under these assumptions and using the

Gauss’s theorem for two dimensions, equation (11.2) may be rewritten as

/OHXE(Z) /A Vi - (pvi) da dz (11.3)

where y.(z) is the environmental profile of y, V- is the horizontal divergence oper-
ator, and vy, is the horizontal flow velocity. Since the only place inside the control
cylinder where there is a source of divergence is the convective region, the area of
integration, A¢, is equal to the horizontal extent of the convective system.

Defining the average detrained mass flux due to convection as

F(z)= ALC " Vi (pvn)da (11.4)

the export per unit volume through the lateral boundary of the control cylinder can

be written as

Ac H

= [ )z de (11.5)

where H and A are the height and horizontal area of the control cylinder. Figure
11.1 shows the profiles of F'(z) for the ten case-studies selected in this research. Table

11.1 lists the lateral export corresponding to those case-studies.
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Figure 11.1: Average detrained mass flux for the ten case studies examined here,
grouped according to environmental moisture and cloud top height. Cases in the
left panel correspond to small systems in dry environments. Tall systems in dry
environments are in the central panel; deep systems in a moist environment are in

the right panel.
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Lateral Export

Mission ME Implied MS Implied
Date | (Wm™) Role |[(Wm™2K™) Role
921126 | + 79.8 ? + 171 M
921128 | + 196.7 ? + 79.4 M
921212 | - 626.1 D - 236.8 ?
921213 | - 266.0 D - 96.6 ?
921215 | - 690.0 D - 260.9 ?
930111 | + 38.1 ? + 17.9 M
930116 - 4.2 D - 21 ?
930118 | + 3.9 ? + 4.7 M
930201 | + 137.8 ? + 52.1 M
930209 | - 404.6 D - 164.0 ?

Table 11.1: Convective contributions to the budgets of moist energy (ME) and moist
entropy (MS), respectively. The implied role of the convective system over its envi-

ronment according to the analysis presented in chapter 6 is also listed.
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Conclusion
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In this work, a correlation between cloud-top height and environmental moisture
is found on a case-by-case basis. The environmental moisture is considered as a
background or initial state of the atmosphere before the outbreak of convection. Even
though an effort is made to insure that selected soundings are not contaminated by
the presence of the system, this is not a solved issue. Therefore, it could be a major
source of error. Assuming that environmental measurements of moisture are indeed
used, it follows that deep convection requires a moist environment to occur, therefore,
it is implied that it is the environmental moisture which controls the height of the
clouds and not vice-versa.

In the effort to understand the role played by different convective regimes on en-
vironmental moisture, a theory to distinguish moistening from drying situations is
developed. The novelty of this theory is that it does not depend on the highly un-
certain precipitation rate. Even though the equations for energy and entropy used
in this formulation do depend on unknown and difficult-to-estimate source terms, it
is shown that estimations for these terms are not required to accomplish the goal
of distinguishing between drying and moistening. The key assumption underlying
the theory is that of small horizontal temperature gradients over the tropical atmo-
sphere, where “small” means that the temperature can be considered as a constant on
mesoscales. The accuracy of this assumption relies ultimately on observations. For
the particular cases analyzed here, aircraft in-situ-measurements taken during ferry
flights ( 4 km height ) show a standard deviation of 0.5 K over 600 km . Though
variability at other altitudes is unknown, it is not expected to have a severe impact

on the conclusions. A theoretical analysis of such impact is missing at this point.
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In order to distinguish drying from moistening situations, all but the source terms
in the balance equations of energy, and all but the internal sources in the entropy
balance, must be estimated. However, we have limited our data analysis to the esti-
mation of the lateral export contribution to the tendency of the moisture equations.
In order to quantify this contribution in concrete cases, it was necessary to make
additional assumptions. Two of these assumptions are the more restrictive: small
horizontal gradients of environmental moisture and zero environmental divergence.
The gradient in environmental moisture has to be small enough so the moisture can
be considered constant over mesoscales. During TOGA-COARE, ferry flights from
Honiara to the studied regions showed that moisture is quite homogeneous over 600
km , with most of the variation due to individual convective clouds (Lopez-Carrillo
and Raymond, 1999). The lack of data needed to estimate environmental di-
vergence is surmounted by assuming that such divergence is small compared to the
divergence due to convection.

Our results (see table 11.1, and figures 10.1 and 11.1) show that deep convective
systems export energy and entropy, while small and/or weak convection has a ten-
dency to import energy and entropy. Though limited, these results suggest that the
role of deep convection is to dry its environment, while that of small and/or weak
convection is to moisten it. Since deep convection requires a moist environment, it is

also implied that convection evolves until it reaches a state of self-limitation.
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In summary, the following conclusions are drawn from the analysis presented

through out this work:

A correlation between cloud-top and tropospheric moisture exists on a case-by-

case basis.

e The moisture in the environment controls the height of the clouds and not

vice-versa.

e Deep convective clouds dry their environment.

e Small clouds moisten their environment.

e Convection is self-limited.
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Appendix A

Clear air sounding profiles

In addition to the primary variables of the sounding and specific humidities discussed
in section 8, the moist energy, entropy and Bernoulli function, also depend on the
temperature of the precipitation liquid water right before it reaches the sea surface.
Unfortunately, this information is not contained in the sounding data. Thus, we
must make an assumption about its value. We believe that a good approximation
for this temperature is the value of the wet-bulb temperature at the surface, whose
value can be obtained from dewpoint and the environmental temperature and pres-
sure measured close to the surface. The isobaric wet-bulb temperature is defined by
an implicit relationship (see for instance Emanuel, 1994) which can be solved nu-
merically. We define the temperature of the liquid precipitation at the surface as the

average of the isobaric wet-bulb temperature over the first 20 m of the sounding.
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A.1 Moist energy

Among other things, the moist entropy depends on the total energy of precipitation
liquid water at the sea surface (e,), which is assumed to be a constant in the anal-
ysis. Because the kinetic energy of precipitation is much smaller than its internal
energy and its geopotential is zero at the sea surface, the total energy of precipitation
is approximated to the value of its internal energy at sea surface: e, = wuy,p. Fur-
thermore, for a clear air balloon sounding, the kinetic energy of the jth component
(just dry air and water vapor in this case) can be approximated as follows:

|2

V4
2

. Ny
ky = (1+2<rd Vo , [voill ) (A1)

27k

where |v,4| and ¥, are the magnitude and unit vector of the dry air velocity velocity,
respectively, and vp; is the diffusion velocity of the jth component. Since in clear
air the velocity of dry air is approximately equal to the wind speed, which is much
larger that the diffusion velocity of water vapor, and the vertical component of the

wind velocity is also much smaller than the horizontal one, it follows that
k] _- — (AA-Q)

where vy, 1s the horizontal wind speed, which is known from the sounding data. We
could argue that this contribution to the total energy is very small compared to the
internal energy of the components; however, it is kept because its value is directly
measured by the balloon sounding instruments. Thus, for clear air balloon soundings,

the moist energy can be approximated as

€= Uz/Q + 97+ qaug + gy — Gullp b (AA?))
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where ug4, and u, are the internal energies of dry air and water vapor, respectively.
Using equations (4.16),(4.17), and (4.18), the equation for moist energy can be

written as

& = Uz/Q + gz + Qd[cvd (Te — Tr)] + udr] + QU[CUU (Te — Tr) + uvr]

— qla (Tpp —T)) + wy] (A.4)

where ug,, Uy, and u;,. are internal-energy reference constants whose values are given
by equations (4.20-4.22) and are listed in table 8.1; Ty, is the temperature of the
liquid precipitation just before it reaches the sea surface, which we choose to ap-
proximate by the wet-bulb temperature. The saturated value of the moist energy
may be obtained from this equation by substituting the specific humidity for its sat-
urated value. Therefore, the saturation deficit as measured by the moist energy can
be written as

de = 6qy[uy — uqg — uppp] (A.5)

where 6¢g, = (¢} — q,) is the saturation deficit measured by the specific humidity.
From the above equation the proportionality between the saturation deficits measured
by the specific humidity and moist energy at each level of the sounding can be seen.

Figure 10.2 shows the profile of these measures of the environment’s saturation.

A.2 Moist Bernoulli function

The quantity required to estimate the export of moist energy through the lateral

boundaries in the moist energy budget (equation 5.21) is not the moist energy itself,
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but the moist Bernoulli function given by equation (5.20). Since by = €y, using
the explicit expression for the Bernoulli function, equation (4.34), and the results of

the previous section, the modified Bernoulli function for clear air can be written as
T=c¢c+ T(qde + unu) (AG)

where ¢ is the moist energy given by equation (A.4). The saturated value of the
moist energy may be obtained from this equation by substituting the moist energy
and specific humidities for their saturated values. Therefore, the saturation deficit as

measured by the moist Bernoulli function can be written as
0T =de +0q,T(R, — Ra) (A7)

where dq, is the saturation deficit measured by the specific humidity. Since € is
proportional to dq,, the moist Bernoulli function is also proportional to d¢q,. A profile

of this measure of the environmental moisture is given in figure 10.2.

A.3 Moist entropy

For clear air, the moist entropy is given by

S = qdSd + GuSv — QuSplp (A.8)

where s; and s, are the entropies of dry air and water vapor, respectively, and s,
is the entropy of the liquid precipitation just before it reaches the sea surface. The
explicit forms of s4, s,, and s, are given by equation (4.37). According to that

equation, the saturated values of these entropies can be written as
82 = sq+ Rd 10g(Pd/PJ) (Ag)
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*

sy = 8, + Rylog(P,/P) (A.10)

S;lvb — Spl,b (AAll)

where P; and P, are the partial pressures of dry air and water vapor, respectively,
and P; and P their corresponding saturated values. Thus, the saturated value of
the moist entropy can be written using these expressions plus the saturated value of
the specific humidity in equation (A.8). The saturation deficit as measured by the

moist entropy is given by
8¢ = 8,(su — 54 — 1) + log[(Pa/ Py)"a"4(P, ) P)) "] (A.12)

A profile of this measure of the environmental moisture is given in figure 10.2.

A.4 Measurement Error

Given the following uncertainties in the measurements: pressure 4+ 0.1 hPa; temper-
ature + 0.2 K; dew point £+ 0.5 K; and wind velocities + 2 ms™" , the percentage
error in the moist energy, Bernoulli function, and entropy are estimated to be about
3, 1, and 2 percent, respectively. These estimations where made using the following
procedure: first we estimate the error in the derived variables (moist energy, Bernoulli
function, and entropy) due to the measurement error in each of the primary variables
(pressure, temperature, dew point, and wind speed), individually. For this purpose,
we composed four artificial soundings in which one of the primary variables is mod-
ified by adding to it the uncertainty in its measurement while keeping the others

untouched. These artificial soundings are then used to estimate the derived variables.
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From here, the error associated with the individual uncertainties in the primary vari-
ables is obtained by taking the absolute value of the difference between estimates of
derived variables using the actual and artificial data. Now, the total error due to all
the uncertainties in the primary variables is taken as the sum of the individual errors
associated with uncertainties in pressure, temperature and dew point and wind speed.
The percentage value is simply 100 times the quotient of total error to the value of
the derived variable calculated from the actual data. Finally, we repeat this process
of finding total percentage errors for the selected soundings in this study and chose

the biggest of them as our final estimation of the error in the derived variables.
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Appendix B

Radar observations

B.1 Radar measurements in meteorology

For meteorological radar measurements, short pulses of coherent radiation concen-
trated in a very narrow beam are sent out from the antenna. When this radiation
encounters cloud particles, it interacts with the molecules which scatter the radiation.
Part of the scattered radiation goes back to the radar (backscatter radiation) and part
goes forward (forward radiation). The duration, 7, of each pulse is about 1 us, so
typically each pulse is 300 m long. The beam size is characterized by the horizontal
and vertical widths 40 and d¢, respectively. These deltas are typically 1 degree, so
when the pulse of radiation interacts with cloud, it will do so with a cloud volume
defined by

V=qg——1—1— (Bl)

This will be the sample volume. We have used ¢7/2 because the interest is on signals

from the leading and trailing edge of the pulse that return to the radar exactly at the
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same time, thus the leading edge can travel only a distance ¢7/2 before it starts its
return trip; otherwise it would not arrive back at the radar simultaneously with echo
from the trailing edge.

The sample volume typically contains a huge number of hydrometeors. For ex-
ample, in continental clouds the concentration of precipitation-sized particles is on
the order of a few to a few hundred raindrops per cubic meter and cloud droplet con-
centrations is about 200 cloud droplets per cubic centimeter, so typically the volume
of the radar pulse is radiating something like 10? to 10' raindrops and more than
2 x 10' cloud droplets. Though the number of precipitation-sized particles is lower
than the number of cloud droplets in a typical cloud they dominate the power return
to the radar. This is because the effective backscatter cross section for small spherical
targets increases with the sixth power of their diameter, see Doviak (1984) . The sum
of the scattering cross sections of all scatterers within the sample volume per unit
volume is called reflectivity. Besides the diameter of the scatterers, the cross section
depends also on the wavelength of the radiation and the permittivity of the particle.
Even though the permittivity is different for different kinds of scatterers (ice, liquid
water, dust, etc..) it is normally taken as a constant. Therefore all the variation
in the reflectivity will come from a factor that depends only on the geometry and
amount of scatterers inside the control volume. This factor is called the equivalent
radar reflectivity. This equivalent reflectivity is what weather radars normally report
as reflectivity, and it is typically given in decibel units. Since the power returned
to the radar by the scatterers is proportional to their scattering cross section, the

reflectivity(or reflectivity factor) provides a way to locate heavy rain spots. However,
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Figure B.1: Sketch of a radar ray showing one gate.

it is sometimes difficult to distinguish between situations with many small particles
and those with fewer but larger particles.

The frequency at which the pulses are emitted from the antenna is called the Pulse
Repetition Frequency (PRF). Therefore, the time between pulses is T = 1/PRF. This
time is called the Pulse Repetition Time (PRT). Once a pulse is sent out, it can only
travel a distance ¢T/2 in order for the backscatter radiation to be detected by the
radar before the next pulse is sent out. We can think of this traveling pulse as forming
a section of a radar ray. So a radar ray is formed from several radar volumes one
after another. In this picture, radar volumes are called gates. Figure B.1 illustrates
the situation. There will be n = (¢T5/2)/(er/2) = Ts/7 gates per ray. While the
antenna is not sending a pulse, it is busy receiving the backscatter radiation from
the previous pulse and writing this information for the corresponding gate. There

is a problem though — range ambiguity. Often, radars are operated with uniform
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PRT, so that when targets have a range larger than r, = ¢T/2, their echoes for the
nth transmitted pulse are received after the (n 4 1)th pulse is transmitted (see figure
B.2). Therefore, echoes from targets located beyond r, will be confused with those
coming from closer targets but from the (n + 1)th pulse. Thus the actual range of a
distant target will be folded into the interval (0,r,). Therefore, r, is the range within
which all targets must lie in order to have their range unambiguously measured. It
should be noted that pulsed-Doppler radar can achieve useful and accurate measures

of velocities for targets beyond r,,.

TSZ + TS

n-1 n+l

TRANSMITTER PULSES

Figure B.2: Range-ambiguous echos. The nth transmitted pulse and its echos are
crosshatched. This example assumes that the larger echo at delay 7 is unambiguous
in range but the smaller echo, at delay 75y, is ambiguous. This “second-trip” echo,
which has a true delay of Ts + 752, is due to the (n — 1)th transmitted pulse. (Figure

taken from Doviak (1984), pg. 45 )
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B.2 Doppler Radar measurements

Conventional, non-Doppler radars only measure the power received from a target.
With Doppler radars, we are interested in measuring the radial velocity of the target
relative to the radar, i.e. the speed of the target toward or away from the radar. To
make this speed measurement, we need to measure the phase of the received signal
compared to the phase of the transmitted signal, as well as the returned power. As
with power-returned measurements, it can be shown ( Houze, 1993 ) that Doppler
measurements are biased towards the largest particles in the sample volume.

In the simplest configuration, we have a stationary radar observing moving targets.
Each target that is moving will shift the frequency of the radar signal an amount which
depends upon its speed toward or away from the radar. Let’s consider a target at a
distance r from the radar, so that the the round trip distance for waves received at

the radar is 2r. The phase of a wave is defined as
$=wl—k- 7+ ¢y (B.2)

.
where w is the angular velocity, k is the wave vector, 7 is the position vector measured

from the radar location, and ¢q is the initial phase. Thus, the phase received at the

radar (7= 0) will be

w
b = w%—l-qbo (B.3)
2me2r
= ZmeET L B.4
Y . + @0 ( )
4 ,
- %—I—gﬁo (B.5)

where ¢ i1s the wave propagation speed and X is the wavelength used for the radar.

96



Most meteorological radars operate at wavelengths of 3 cm (X-band), 5 cm (C-band)
or 10 cm (S-band). The shorter wavelengths are more sensitive to weakly reflecting
targets, but they suffer stronger attenuation by rain.

From equation (B.5), we can calculate the change of phase with time from one

pulse to the next:

do _ Amdr
dt ) di
4
- Ty B.6
; (B.6)

where V, is the component of the target velocity along the radar beam. The rate of
change of the phase is basically the total shift in frequency due to the velocity of the
target detected at the radar location.

To compute this Doppler shift frequency for each radar volume (gate), the radar
compares the phases of the electric field for consecutive pairs of pulses. The radar
makes this calculation for several pairs and then averages all the results to yield a
final estimate of the Doppler shift. This final estimate is substituted into (B.6) to
obtain the estimate of the mean radial velocity .

As mentioned above, Doppler shift frequency is sampled at intervals T, = 1/PRF.
Unfortunately, given a set of samples, we cannot relate them to one unique Doppler
frequency. Figure B.3 shows that the same set of samples could have resulted from
any one of the three signals having different Doppler frequencies. All such signals that
fit the sample data set are called aliases, and fy = (275)~! is the Nyquist (or folding)
frequency, which is the maximum frequency that can be detected for a given sampling

rate. All Doppler frequencies between + fy are the principal aliases, and a frequency
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higher than fx will be folded into the interval (—fx, fn), generating ambiguities. If

Ts=(2f,)

Figure B.3: Signals at three different Doppler frequencies that yield , when sampled,
the same set of data. These Doppler frequencies are aliases of each other.(figure taken

from Doviak (1984) pg. 45 )

we use 27 fy as the maximum unambiguous Doppler shift in equation (B.6), then we
find that the maximum radial velocity that can be detected unambiguously is Vy =
A/4T's. This threshold velocity is called the Nyquist velocity. So, V, is unambiguously
detected only in the interval

Vi< Wy (B.7)

In principle we could increase Viy by increasing the PRF (1/75). In so doing, however,
we reduce the unambiguous range as was mentioned in section B.1.

There are now some techniques that involving the use of different radar wave-
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lengths which serve to extend the unambiguous velocity. We will not go into those
techniques here, since our radar data was sampled at a single wavelength of 3.22 cm.

Some details about those techniques can be found in Doviak (1984), chapter 7 .

B.3 Airborne Doppler Radar

Airborne Doppler radar has proven very useful in providing information on meso-
and convective- scale weather systems. It provides possibly the best observations of
systems which are inaccessible to ground based radars, such as hurricanes. Airborne
Doppler radar was particularly useful during TOGA-COARE, where the influence of
land masses was not desired.

Even when radar parameters such as wavelength and PRT might be fixed, the
flexibility of a mobile platform affords several ways to survey weather systems. Of
importance to us are the scanning strategy (i.e. how the antenna itself is operated)
and the aircraft trajectory used during the collection of the radar data. We illus-
trate some of the possible scanning and aircraft trajectory strategies in the following

subsections.

B.3.1 Scanning strategy — FAST

The Doppler radar is mounted in the tail of the aircraft and has three axes of sta-
bilization, allowing the radar system to position the antenna at a prescribed angle
relative to the ground track of the aircraft. In addition, the radar has the ability of

alternating the prescribed angle from sweep to sweep. The capability to alternate
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angles between sweeps enables the radar to simulate a dual-beam radar, scanning one
sweep forward, and one sweep aft— this fore/aft scanning technique is called FAST

(see fig.B.4).

Figure B.4: Fore/Aft scanning technique (FAST)

FAST is implemented in such a way that the tail radar alternates between forward
and aft sweeps, at a prescribed tilt angle measured off a perpendicular to the ground
track(< 125°). This allows the radar to sweep out two cones that intersect at various
ranges from the plane’s ground track, see figure B.5, which in turns provides pseudo-
dual Doppler coverage without flying two different headings. Flying two different
headings will provide multiple Doppler coverage. In the FAST continuous mode, the
antenna sweeps a full 360° in the vertical plane at the prescribed rotation rate. For

instance, at 10 RPM and aircraft ground speed of 140 m/s, each revolution would
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be separated by 840 m, so in FAST continuous mode each revolution in the same
pointing direction would be separated by 1600 m. Hence, in this example, the spatial

resolution is roughly 1600 m.

v (21f) |

.

\V  Aircraft Velocity f Antenna rotation rate
R Radar Range L Length of the Aircraft Track
H = R cos(p) D=L-2Rsn(¢

(@ AntennaTilt Angle

Figure B.5: Horizontal pseudo-dual Doppler coverage for tail Doppler radar using the

fore/aft scanning technique(FAST).
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B.3.2 Trajectory strategies

FAST can be combined with many different aircraft trajectories. Although there are
some general rules in designing aircraft trajectories — especially those concerning
aircraft safety — in most cases aircraft trajectories are chosen by scientists in order
to meet particular interests for the field experiment at hand. Figure B.6 shows two

trajectories used during TOGA-COARE to survey convective systems.
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Figure B.6: Examples of aircraft trajectories used during TOGA-COARE to survey
convective systems. Panel (a) shows a so-called “stack” flown by WP3-42 on February
1, 1993. Panel (b) shows part of the mission flown by WP3-43 (dashed) and WP3-42
(solid) on December 12, 1992. The segments were time-coordinated to allow for a
more dense sampling. This sampling geometry performed by two aircraft in FAST

mode is called quad-Doppler.
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B.4 Wind field synthesis

In meteorology, a number of conclusions can be drawn just from knowing whether a
cloud system is moving toward or away from a certain location. However, the kinemat-
ics of a given convective system is best studied (or at least, it is more straightforward
to study) if we possess the wind velocity field of the system. Even though there
are instances when some characteristics of the cloud system can be obtained directly
from radial velocities — most remarkably the estimation of divergence profiles using
an ad-hoc aircraft trajectory know as “purls” ( Mapes 1992 ) — it is common practice
to obtain the wind field before we start the analysis of the kinematics of the system.
Normally, it is understood that this field consists of the Cartesian velocities of the
wind at every point in a grid that covers the observed features of a cloud system.
There are in the literature several techniques for constructing this field from Doppler
velocities. Many of them are still a matter of ongoing research within the Doppler
community. In this section, we present in some detail a technique pioneered by Ray-
mond and Lewis (1995) , and further refined in Raymond, Lopez, and Lopez (1997).
Though improvement of this technique is part of our current research, we present it
here as it was used to synthesize the wind field of the ten case-studies reported in
this work. Those cases were observed by the WP3 aircraft during TOGA-COARE;
details are presented in part I.

Because the radar is moving while collecting data, the observed target velocity is
a combination of the actual target velocity and the component of the aircraft velocity

along the radial direction. Hence, the first step in the synthesis of the wind field is to
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eliminate the aircraft velocity from the data as well as to correct for possible foldings
in the target velocity. For this purpose, we employed an unfolding algorithm which
uses the wind speed and navigation parameters from the flight level in-situ data of the
corresponding aircraft. The idea behind the unfolding algorithm is that the velocities
measured by the radar for parcels close to the aircraft have to be close to the velocity
measured by the in-situ instruments. So, the radial velocity on the first gate of the
radar ray is adjusted to be inside a Nyquist interval centered at the value of the in-situ
measurement. Velocities for the rest of the gates are modified by assuming continuity
along the ray. For instance, the velocity on a given gate has to have a value inside the
Nyquist interval that is centered on the velocity of the previous gate. If it does not,
it is adjusted by adding or subtracting an integer multiple of the Nyquist velocity.
Note that this algorithm removes aircraft speed automatically.

The next step in the technique is to eliminate data that might be contaminated
by sea clutter and side-lobe radiation from the antenna. Sea clutter is minimized by
eliminating gates below a certain altitude. Reduction of side lobe effects is done by
eliminating gates within a specified radius from the aircraft.

Subsequently, the remaining radar data are corrected for the Earth curvature
and then re-navigated to a common reference frame moving with the storm. The
re-navigation is a very important step in the analysis because we hope to generate a
snap-shot of the system with the collected data, so we want to account for some of the
evolution during the collection time. Furthermore, an inertial reference frame moving
with the system is what we need to explore the true inflow-outflow characteristics of a

given system. Note however, that velocities remain earth-relative during this process.
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At this point, we are ready for the interpolation of the radial velocities to a Carte-

sian grid. Consider Figure B.7. Our problem is to estimate the velocity of the wind

el i

Figure B.7: Radial velocity measurements inside a grid volume. The spheres represent

radar-sample volumes (i.e. gates). Arrows at the corners represent the interpolated

wind velocities.

field ¥ = (u,v,w) at every grid point, based on radar observation of the precipitation
particle velocity v, = (u, v, w,), where we have assumed that the precipitation parti-
cles move with the wind velocity in the horizontal. On the other hand, the vertical
particle velocity, w,, is related to wind vertical velocity, w, by the equation

(B.8)

w = w, + wy

where w; is the particle terminal velocity, which can be determined independently

(for instance, from reflectivity measurements). Since radar can only detect radial ve-
locities, our measurements are the projections of v, over the radar-pointing direction,

i, l.e. v, = 1 - U,. So, the information for each of the n measurements can be written
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as

( cos(6;) cos(¢;) cos(7;) ) ( u v ow, )T = ( Ui ) (B.9)

where cos(0;), cos(;), cos(;) are the antenna cosine directions for the ith measure-
ment, and (u v w,)T is the transpose of the particle velocity. Equation (B.9) defines
what is known as a forward problem where, given the cosine directions, if we know
the Cartesian components of the velocity vector, then we can calculate the measured
value of the radial velocity. So, our interpolation scheme is cast as the inverse prob-
lem, where we are given the cosine directions plus the radial velocities and we want
the Cartesian components of the particle velocity. For (n > 3), equation (B.9) is an
over-determined system , so there is no exact solution, unless n — 3 of the equations
are linearly dependent and can thus be eliminated. Further refinement to the inter-
polation scheme is made by giving more weight to measurements made closer to the

interpolation point. So, in general, the weighted interpolation scheme becomes

( hi cos(8;) hicos(¢;)  hi cos(v;) ) ( uovow, )T = ( hivyi ) (B.10)

where h; = h;(s) represents the weight for the ith measurement, and s is the dis-
tance between the interpolation and measurement points. In particular, for our data

analysis the weight for the ith-measurement contributing to a grid point is given by

1/82'

hi= =L
Zk:l 1/Sk

(B.11)

where s; is the distance between the grid and measurement points and n is the num-
ber of all measurements made inside a grid box centered at the grid point. The

contribution from measurements outside this grid box is defined as zero.
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Inversion of equation (B.10) results in what is called a triple Doppler estimate
for v,. However, such a solution is typically quite inaccurate when none of the ray’s
contributing gates to the grid point have a high elevation angle. In this case a
dual Doppler solution may be attempted. For this synthesis, equation (B.10) is still
applicable but because of the small elevation angles we do not trust the term cos(v;)w,.

Instead of just getting rid of it, equation (B.10) is rewritten as

( hi cos(0;) ki cos(;) ) ( u v )T = ( hivyi — hi cos(vi)w, ) (B.12)

Since (uv)T will depend on w,, a model is proposed to explicitly take this into account:

Let

Vi = vpo + pr (B.13)

where vz = (uv)? is the horizontal wind velocity, vi is the horizontal wind velocity
when w, = 0, and fis a constant vector to be determined. With this model our

Doppler interpolating scheme becomes

u+ fo Wy

( hicos(8;)  hi cos(;) ) = ( hivyi — hi cos(y;)w, ) (B.14)

U‘|‘fa:wp

Defining the system matrix as
hqcos(61)  hy cos(¢r)

ho cos(fy)  ha cos(¢ps)

G=1| hy cos(f3)  hgcos(¢s) (B.15)

hy, cos(0,)  hy, cos(éy)
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Equation (B.14) can be written as

—

G(vio 4+ w,f) = A — Bw, (B.16)
where
T
A = ( hiver hovea hzves - huvp, ) (B-N)
T
B = ( hicos(y1) hacos(y2) hscos(ys) -+ hycos(yn) ) (B.18)

In order to obtain vgg and ]?, we start by multiplying both sides of equation (B.16)

by GT. This yields the normal equations for the system:
GTG(vio + w,f) = GT(A — Bw,) (B.19)
Now, the solution for vgg can be obtained by setting w, = 0 in (B.19):
vio = (GTG)T'GT A (B.20)
Substituting this result back into (B.19) gives
GTGf = -G"B (B.21)
from which we find
f=-(G"a)'G"B (B.22)
Note that f does not depend on velocity data. So far, we have estimates for the
horizontal wind velocities vg, which depend on the dual Doppler estimates vgo and
the vertical particle velocity w,.
The particle vertical velocities are obtained in the following way: First, the wind’s
vertical velocities are calculated from the horizontal velocities vgg by a forward inte-

gration of the anelastic mass continuity equation, starting at the top of the cloud and
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assuming zero vertical velocity at cloud top. (Details of the integration procedure are
describe in Lopez-Cavazos (1995) ). The particle terminal velocity is then estimated
using the procedure in Jorgensen, LeMone, and Jou (1991), which is valid for the
deep tropics — the particle terminal velocity is taken as negative, reflecting the down-
ward motion of particles. Finally, the particle vertical velocities are computed as the
sum of the vertical wind and the particle terminal velocity. At this point, equation
(B.13) is used to calculate corrected values of the horizontal velocities. However,
before we obtain the vertical velocities from horizontal velocities, we must eliminate
bad horizontal velocities that arise during the synthesis of vgg. In the next section

we illustrate how these bad estimations arise and how we handle them.

B.4.1 Error analysis

As mentioned in the previous section, the sampling geometry used to retrieve the
radial velocities is not appropriate to obtain good estimations of the vertical compo-
nent of the velocity. In general, if the angle between the radar ray and the velocity
of the hydrometeors is close to 90°, then the retrieved value of the radial velocity will
be close to the noise level. If all of the measurements that contribute to a Cartesian
component of the velocity at a grid point have values at or below the noise level, we
say that the component is not well resolved and must be eliminated from the analysis.
This is especially critical for horizontal components of the velocity, if we are to use
them to obtain the vertical component.

Since at the beginning we do not know what is the actual direction of a particle
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motion, we can not settle for directly calculating the angle between that direction
and the direction in which the radar beam is pointing (we do know this direction
from the radar data). We approach the problem of identifying grid points with badly
resolved Cartesian components by examining how the error in the measurements is
propagated to the Cartesian fields. In what follows, we use the results derived in
appendix C.

First, let’s calculate the covariance matrix of vz. From equation (B.13), we have
cov(viy) = cov(vio+ fw,) (B.23)

= cov(vmo) + cov(pr) + 2cov(vHo, pr) (B.24)

where we have used equation (C.7). The covariance of vge can be obtained from

equation (B.20)

cov(vpg) = cov((GTG)_lGTA) (B.25)

where A = (hyv,1 hovea hsves -+ huv.,)T is the weighted data vector, and G is

the system matrix given by equation (B.15). Equation (B.25) can also be written as

cov(vig) = cov((GTG)_lgTVR) (B.26)
where
hicos(6y) hicos(f2) hicos(f3) -+ hZcos(d,)
gt = (B.27)
Wcos(dr) Hhcos(ds) Mhcos(ds) - KL cos(n)
and Vg = (v,1 v2 vp3 -+ v.,)7 is the unweighted data vector. Thus using (C.5),

equation (B.26) can be written as
cov(vize) = (GTG) gl cov(VR)(GTG) 1 g"]T (B.28)
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For radial velocity measurements, it is assumed that they all are independent and

have the same standard deviation, so
cov(Vg) = var(Ve) lLuzn (B.29)
where [,,,, is the n x n identity matrix. Then we have
cov(vire) = (GTG) ' g g[(GTG) T war(VR) (B.30)

On the other hand, using equation (C.8) the variance of the second term in equation

(B.24) can be written as

— —

var(fw,) = ff_TUar(wp)) (B.31)

Thus, the covariance matrix for vy can be written as
cov(viy) = (GTG) g g(GTG) T var(Ve) + ffTvar(wp)) + QCov(vffo,pr) (B.32)

The variance of vz comes from the diagonal elements in (B.32).

szH = \I;IJ‘Z/R —I_ 303Up —I_ QCOU(UIH(J; fzwp) (B33)
ain = Vyop, + floh + 2cov(vymo, fywy) (B.34)

where ¥, and W, are the diagonal elements of the matrix (GTG)"1gTg[(GTG)~!]T.
At this stage of development our technique focuses not on the actual value of the
variance, but on how much this variance is affected by the geometrical configuration
(angle between the direction of radar’s ray and meteor’s velocity) during the collection
of the data. This configuration is buried in the coefficients ¥, U, f,. and f,. From
equations (B.33) and (B.34), we see that contributions to the total error can be

amplified, depending on the values of ¥,, ¥,, f,, and f,. So, we can set some
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threshold for these amplification factors, such that we can discard grid points where
thresholds are exceeded.

It is worth noting that such thresholds can be set even before we know the particle
vertical velocity. This is very useful, because w, is calculated based on the horizontal
velocities via the continuity equation.

As an illustration of this procedure, let’s consider the case of December 15, 1992.
The data were taken by the X-band Doppler Radar mounted on the tail of the
NOAA(National Oceanic and Atmospheric Administration) WP3-42. The antenna
was used in FAST continuous mode to allow for a Doppler resolution of roughly 1.6
km. Radial velocities were interpolated to a Cartesian grid extending from the surface
to 20 km, with 1 km intervals and horizontal grid size of 5 km, using the procedure

described in section B.4.
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Figure B.8: Horizontal wind velocities assuming zero vertical particle velocity for the

case of December 15, 1992, surveyed by the WP3-42 during TOGA-COARE. The

velocities are Earth-relative, but they are shown in the storm reference frame. The

axes are NS-EW oriented and their scale is in km . The arrow scale is 1 km per 1

m s~ . All panels refer to the 10 km height. (a) All velocities inferred. (b) Locations

where the amplification factors: W, ¥,, f2 f; are bigger than 1. (c) Velocities

associated with the locations shown in panel (b). (d) Velocities that remain after

thresholding out points where the amplification factors are larger than one.
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Appendix C

Covariance Calculations

Consider the random vector

=z, 29 23 -+ )7

the elements of which are jointly distributed random variables with
Elzi] = p
and
cov(zi, z;) = El(wi — Elzi])(x; — Ela;])] = 04
The mean vector is defined to be simply the vector of means

E[f] = [Nl M2 ft3 - Mn]T

(C.1)

(C.2)

(C.4)

The covariance matrix of 7 is defined to be an n X n symmetric matrix whose 27

element, o;;, is the covariance of z; and z;.

Theorem 1. If ' is a random vector and A a fixed matrix, then
cov(AT) = Acov(¥)AT

114



Proof: Let’s consider the ijth element of the covariance matrix. Since the k element

of the vector AZ is given by

(Af)k = Zakl.’lil (CG)
=1
then, by definition
cov(AZ);; = cov Zall:z:l, Z a]-ma:m)
=1 m=1
= F [(E agr; — F [E am:l]) (Z AT, — E lz a]m:z:m])]
=1 =1 m=1 m=1
= B[S aiter— Ble) 3 ain(an — Blen)
=1 m=1

= YD aaajnBl(z1 — Eln])(2m — Elza])]

=1 m=1
= Z Z i1 jmcov (2, T

(=1 m=1
= > > aijmoum

(=1 m=1
= > > auoima,,;

(=1 m=1

This is the 7jth element of the desired matrix.
Theorem 2. If ¥ and 3 are random vectors, then
cov(Z 4 ) = cov(Z) + cov(y) + 2cov(Z, y) (C.7)

Proof: Let’s consider the 75th element of the covariance matrix:

cov(Z+ )iy =

El(zi +yi — Elzi + yil)(z; + y; — Elz; + y;])]
= E[(z; — Elz] + vy — Ely))(z; — Elz;] 4+ y; — E[y;])]
= FEl(z; — Elzi])(z; — Elz;]) + (vi — Elyi])(y; — Ely;]) +

(zi = Blzi])(y; = Elys]) + (vi = Blyil)(z; — Elz;])]
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= cov(x;, ;) + cov(yi,y;) + cov(x;,y;) + cov(ys, ;)

= cov(x;, ;) + cov(yi, y;) + 2cov(z,, y;)

This is the 15th element of the desired matrix.

Theorem 3. If z is a random variable and ¢ is a fixed column vector, then

cov(Cz) = EETvar(z) (C.8)

Proof: Let’s consider the 75th element of the covariance matrix.

cov(cz)y; = El(ciz = Elciz])(¢jz — Elc;2])]
= e Bl(z — Blz])(2 — E[2])]

= ¢icjvar(z)

This is the 75th element of the desired matrix.

In deriving the results for this appendix, the book by Rice(1988) was very useful.
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Appendix D

Divergence — Column Correction

Assuming that p = p(z), we have that the mass continuity equation becomes

0
pVp U+ —(pw) =0 (D.1)

z

where V- = i;—z + jaa—y, u and w are the horizontal and vertical velocities, respectively.
Integrating D.1 from the surface (z = 0) to the top of the cloud system (z = z7), we

have

/OZT Vi - (pii) dz - /OZT %(Pw)dz
= —[plzr)w(z,y, z1) — p(0)w(z,y,0)]

=0 (D.2)

where we have use the fact that w is zero at the surface and at the top of the cloud
system. So, the mass continuity equation does impose a condition on the horizontal
mass flux, pu, at every column.

This condition can be broken among other things by errors in measurements as well

as for numerical errors after many manipulations of the velocity fields and in particular
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when the velocities are subject, for instance, to a smoothing process that brings

information from one column to another. In order to restore this basic condition, we

use the following procedure. Let D,(x,y,z) = Vj - (pil) be the uncorrected divergent

mass flux. Therefore in general, the vertical integral of D, will be different than zero

and will depend on x and y, 1.e.

Hence, equation D.3 becomes

/ZT Du($7y,Z) dz = /ZT LC(.I',y) dz
0 0

ZT

or

[ e~ Letea] =

T

from here, we can define a corrected divergent mass flux as

1

T

D.(x,y,2) = Dy(x,y, z) C(z,y)

or

. Lper .
Difa.y.2) = V- (pil) = — [ V- (pil dz
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