Effects of Zonal Asymmetries on Mean Tropical Climate and its Variability

Stipo Sentic, University of Notre Dame du Lac Third Split Workshop in Atmospheric Physics and Oceanography, Croatia, 2011

Introduction

- NCAR Community Atmosphere Model 3
- T42 horizontal resolution (2.8° x 2.8°), and 26 vertical levels
- Perpetual March 21 insolation and ozone
- 5-year aquaplanet simulation with idealized SST boundary conditions
- First 3 months excluded

Introduction

- Uncoupled from ocean (Kiranmayi and Maloney, 2010)
- Extratropical forcing
- Wind induced fluxes important
- Quarter meridional SST gradient zonally asymmetric simulation
- Zonal average (zonally symmetric) of the same

Introduction

 Hypothesis: Zonally asymmetric model -> weak or negative GMS in regions of increased SST

• Outline: mean climate, NGMS, conclusions

Variable [dimension]

Average zonal velocity [m/s]

Velocity magnitude [m/s]

Precipitation [W/m²]

Zonal velocity variance [m/s]

-5

-10

MSE horizontal advection

MSE vertical advection

Horizontal moisture advection

Latitude [^o] -20 -50

Vertical moisture advection

Moisture convergence

NGMS

• Raymond and Fuchs (2009)

 $NGMS < 0 \Rightarrow Moisture mode$

 $NGMS = rac{Moist\ static\ energy\ advection}{Moisture\ advection}$

NGMS = Vertically integrated divergence of some intensive quantity conserved in mosit adiabatic processes Measure of strength of moist convection per unit area

Conclusion(s)

- Area of low to negative NGMS in the warm patch
- Confirmation of the variability resembling a moisture mode

References

- Kiranmayi, L, and Maloney, E, 2010, Effects of SST Distribution and Radiative Feedbacks on the Simulation of Intraseasonal Variability in an Aquaplanet GCM, Journ. Meteo. Soc. Of Japan
- Raymond, D, and Fuchs, Z, 2009, Moisture Moede and the Madden-Julian Oscillation, DOI: 10.1175/2008JCLI2739.1
- Maloney, E, Sobel, A, and Hannah, W, 2010, Intraseasonal Variability in a Acquaplanet general Circulation model, Jou. of Advances in Modeling Earth Systems