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A quote and questions

I. N. James, Introduction to Circulating Atmospheres, p93,
when referring to the Held-Hou model for the
Hadley circulation:

»> “ ... . This is not to say that using simple models is folly.
Indeed the aim of any scientific modelling is to separate
crucial from incidental mechanisms. Comprehensive
complexity is no virtue in modelling, but rather an
admission of failure.”

» What is the analogue of the Eady Problem for hurricanes?

» What are the basic dynamics of hurricane intensification?




Topics

1. How do tropical cyclones intensify?
* The basic thought experiment for intensification
 Important physical principles

3. Paradigms for intensification

4. Recent discoveries using idealized model simulations
with simple physics

 Dynamics of vortex spin up

e [Is WISHE relevant?

 Axisymmetric view of spin up — comparison with
the other paradigms

5. New frontiers




The basic thought experiment for intensification

Initial condition Mean sounding
A A

Axisymmetric

T(z)

/
vortex — \
C




The primary circulation

Pressure
gradient force

S S

e
Centrifugal force and Coriolis force




Frictionally-induced secondary circulation

primary
Secondar . .
. : y circulation Pressure
circulation

gradient force

Friction layer

&

o
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“Tea cup” Experiment




Hurricane intensification

> Basic principle
- Conservation of absolute angular momentum:

M =rv + r’f/2 f = Coriolis parameter
= 2Qsin(latitude)
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v=M/r—rt/2 ‘ If r decreases, v increases!

‘ Spin up requires radial convergence




Paradigms for intensification

. Conventional view articulated by Ooyama (1969, 1982),

Willoughby (AMM 1998, WMO, 1995) involving
convectively-induced convergence together with absolute
angular momentum conservation above the boundary
layer.

. Thermodynamic view (E-theory) articulated by Emanuel

(1989, 1994, 1995, 1997) involving the WISHE
mechanism.

. Asymmetric view (M-theory) invoking “Vortical Hot

Towers” or VHTs (Hendricks et al. 2004, Montgomery et
al. 2006, Nguyen et al. 2008, Shin and Smith 2008,
Montgomery et al. 2009, Smith et al. 2009, Hoang et al.
2009).




Conventional view
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Thermodynamic view: A steady

hurricane model
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ABSTRACT

Observations and numerical simulations of tropical cyclones show that evaporation from the sea surface is

essential to the development of reasonably intense storms. On the other hand, the CISK hypothesis, in the form
originally advanced by Charney and Eliassen, holds that initial development results from the organized release
of preexisting conditional instability. In this series of papers, we explore the relative importance of ambient
conditional instability and air-sea latent and sensible heat transfer in both the development and maintenance
of tropical cyclones using highly idealized models. In particular, we advance the hypothesis that the intensification
and maintenance of tropical cyclones depend exclusively on self-induced heat transfer from the ocean. In this
sense, these storms may be regarded as resulting from a finite amplitude air-sea interaction instability rather
than from a linear instability involving ambient potential buoyancy. In the present paper, we attempt to show
that reasonably intense cyclones may be maintained in a steady state without conditional instability of ambient
air. In Part II we will demonstrate that weak but finite-amplitude axisymmetric disturbances may intensify in
a conditionally neutral environment.




Emanuel’s 1986 steady hurricane model
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WISHE = Wind induced surface heat exchange

Basic air-sea interaction feedback loop:

Increase in surface wind speed =>

Increase in surface moisture transfer from the sea surface =>
Increase in “fuel supply” to the storm =>

Increasing wind speed ...
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» Idealized numerical model
simulations with simple

physics (MMS5)

» 5 km (1.67 km) resolution in
the finest nest, 24 o-levels
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Vertical velocity\vorticity pattern at 24 h

850 mb ~ 1.5 km
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Vertical vorticity evolution at 850 mb
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300 km

Vertical vorticity pattern at 850 mb
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Interim conclusions

» The flow evolution is intrinsically asymmetric.

» The asymmetries are associated with rotating convective
structures that are essentially stochastic in nature.

»> We call these structures vortical hot towers (VHTS).

» Their convective nature suggests that the structures may
be sensitive to the low-level moisture distribution, which is
known to possess significant variability on small space
scales.

» Suggests a need for ensemble experiments with random
moisture perturbations.




Evolution of local intensity: 10 ensembles
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Vertical velocity pattern at 850 mb at 24 h
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Is WISHE relevant?
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Tropical cyclone spin up revisited
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Abstract:

We present numerical experiments to investigate axisymmetric interpretations of tropical-cyclone spin up in a three-dimensional
model. Two mechanisms are identified for the spin up of the mean tangential circulation. The first involves the convergence of
absolute angular momentum above the boundary layer and i1s a mechanism to spin up the outer circulation. 1.e. to increase the vortex
size. The second mvolves the convergence of absolute angular momentum within the boundary layer and is a mechanism to spin
up the inner core. It is associated with the development of supergradient wind speeds in the boundary layer. The existence of these
two mechanisms provides a plausible physical explanation for certain long-standing observations of typhoons by Weatherford and
Gray. which indicate that mner-core changes in the azimuthal-mean tangential wind speed often occur independently from those in
the outer-core. The unbalanced dynamics in the inner core region are important in determining the maximum radial and tangential
flow speeds that can be attained. and therefore important in determining the azimuthal-mean intensity of the vortex. We illustrate the
importance of unbalanced flow in the boundary layer with a simple thought experiment. The analyses and interpretations presented
are novel and support a recent hypothesis of the boundary layer in the inner core region.
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Azimuthal average of the Nguyen ef al. control calculation
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Radial wind speed
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Movie 2

Time-height sequence of Absolute Angular Momentum
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Revised view of intensification: two mechanisms
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Exciting times!

There is much work to do to pursue all the consequences
of our recent findings and the new paradigm for
intensification.

We need to determine the limits of predictability for
intensity and especially for rapid intensification.

We need to much better understand the flow in the inner
core, beneath and inside the eyewall, and to determine the
utility of conventional (boundary layer) representations of
this region in models.

We need to develop a new theory for the potential intensity
of tropical cyclones for climate assessments.







What is WISHE?

WISHE = Wind Induced Surface Heat Exchange

Acronym used to link source of fluctuations in sub-cloud

layer entropy or 0, arising from fluctuations in wind speed
(Yano & Emanuel 1991).

Q: What is the WISHE mechanism of TC intensification?

A: Positive feedback between near-surface mean 6, and
near-surface mean wind speed.

It has become the accepted paradigm for explaining TC
development in Univ. Textbooks and Review Articles
(Holton 2004; Asnani 2005; Lighthill 1998)

Q: But how does it work?
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Balanced versus unbalanced dynamics
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Balanced versus unbalanced dynamics
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Effects of different boundary layer schemes
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