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�Dynamics is good,
dynamics is impressive; but
it is thermodynamics that

does the work.�

� With apologies to Mark Twain
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Speci�c Dry Entropy:
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Saturated Speci�c Moist Entropy:
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Since ss = ss[θ, p, rS(θ, p)], we can invert: θ = θ(ss, p).

Deep convective inhibition index: DCIN = sT − sB.

Downdraft entropy de�cit: sB − sD.
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Two Ways To Reduce DCIN:

1. Decrease sT � Most e�ective mechanism is via dry adiabatic

lifting associated with fast-moving, wave-like disturbances �

however, e�ect is necessarily transient, resulting in little rain.

Ekman pumping can also act to decrease sT via lifting.

2. Increase sB � Moistening via surface evaporation � slow-

moving disturbances can act over a long period, producing a

lot of rain.
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Planetary Boundary Layer (PBL) Control Volume for Boundary
Layer Quasi-Equilibrium (Raymond 1995; Emanuel 1995):
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• Mass balance: (Mu −Md)b
2 − (Ml)4b∆z = 0

• Entropy balance: (MusB −MdsD − Fs)b2 − (MlsB)4b∆z = 0

• Updraft-downdraft condition: Md = aMu
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Boundary Layer Quasi-Equilibrium Results:

• Downdraft mass �ux:

Md =
Fs

sB − sD

• Updraft mass �ux:

Mu =
Fs

a(sB − sD)
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Surface Entropy Flux:

Fs = ρBCDUeff(ssss − sB)

ρB: boundary layer density; CD = O(10−3): drag coe�cient;

Ueff = (U2
B + W2)1/2: e�ective wind in boundary layer (W ≈

3 m s−1); UB: boundary layer wind speed;

ssss: saturated moist entropy at temperature and pressure of sea

surface; sB: boundary layer entropy.
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Aircraft Measurements from TOGA COARE:
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Precipitation Rate and Boundary Layer Quasi-equilibrium:

Assume that precipitation rate is proportional to the transport

of moisture out of the PBL by updrafts

P = εMurB =
εFsrB

a(sB − sD)
=
(
TRFs

L

)(
ε

aσ

)

• 0 ≤ ε < O(1): dimensionless precipitation e�ciency;

• a = Md/Mu: downdraft to updraft mass �ux fraction;

• σ = (rB − rD)/rB = TR(sB − sD)/(rBL) < 1: dimensionless

entropy di�erence between boundary layer and downdrafts.
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What Do Observations Say?
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Bretherton, Peters, and Back (2004):

S =

ˆ
rV dp

/ˆ
rSdp ≈

ˆ
(s− sd)dp

/ˆ
(ss − sd)dp
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Raymond, Sessions, and Fuchs (2007):
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Saturation Fraction Dependence:

Dry environments evaporate cloud and precipitation, resulting in

weaker cloud development and less precipitation.

P =
(
TRFs

L

)(
ε

aσ

)
This is consistent with a precipitation e�ciency ε(S) which in-

creases strongly with saturation fraction S.
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Entropy Soundings in Disturbed and Undisturbed Environments

(Raymond, Sessions, and Fuchs 2007):
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Disturbed Environments:

Disturbed environments with heavier mean precipitation rates

tend to be moister and more stable than undisturbed environ-

ments.

P =
(
TRFs

L

)(
ε

aσ

)
Increased humidity and stability reduce the saturation de�cit of

downdrafts σ and may also reduce the downdraft fraction a, both

of which increase the precipitation rate.
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Back and Bretherton (2005):
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Wind Dependence:

At constant saturation fraction, precipitation increases with wind

speed.

P =
(
TRFs

L

)(
ε

aσ

)
Since surface �uxes increase with wind speed, the multiplicative

dependence of P on Fs explains this result.
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Conclusions:

• Boundary Layer Quasi-Equilibrium produces plausible hypothe-

ses explaining the observed dependence of precipitation rate

over tropical oceans on environmental pro�les and wind speed.

• These hypotheses are testable using cloud-resolving numeri-

cal models and the right kind of cloud physical observations.
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