The maximum intensity of tropical cyclones in axisymmetric numerical model simulations

G. H. Bryan and R. Rotunno

Ivan Güttler guettler@cirus.dhz.hr

Split, Croatia, 26. 5. 2009.

Introduction

Tracks and Intensity of Tropical Cyclones, 1851-2006

Saffir-Simpson Hurricane Intensity Scale

NASA

Why are we interested in the maximum intensity of TCs?

- 1. real-time forecasting
- 2. hazard planning
- 3. consequences of climate change

Introduction

Approaches?

- 1. analytic approach
- 2. observational dataset
- 3. numerical models

Method

Sensitivity tests:

- (1) grid spacing
- (2) turbulence parameterization
- (3) air-sea exchange coefficients
- (4) microphysics parameterization
- (5) governing equations
- (6) ice microphysical processes
- (7) water conservation
- (8) domain size
- (9) external lateral boundary conditions
- (10) size and intensity of the initial vortex
- (11) "precipitation mass sink" effect

Comparison with observations.

Model

- 1. nonhydrostatic
- 2. axisymmetric
- 3. compressible
- 4. improved mass and energy conservation \rightarrow loss is less than 0.05%
- 5. inclusion of dissipative heating \rightarrow increase in intensity by 20 %
- 6. time-dependent variables
 - 1. (u, v, w)

2.
$$\pi$$
'
3. θ

$$\nu_h S_h^2 + \nu_v S_v^2 - \nu_v N_m^2 = \epsilon$$

- 4. q_v
- 5. q_l

$$\epsilon_h = \nu_h^3 / l_h^4 \qquad \epsilon_v = \nu_v^3 / l_v^4$$

$$\nu_h = l_h^2 S_h \qquad \nu_v = l_v^2 \left(S_v^2 - N_m^2 \right)^{1/2}$$

SST = 26.13 °C

1500 km x 25 km

 $\Delta t = 7.5 \text{ s}$

Closed boundary condition with Newtonian damping

Intensity of initial vortex = 15 m/s

(1/5) Grid spacing

Δr (m)	Δz (m)	$v_{\rm max} \ ({\rm m} \ {\rm s}^{-1})$
Sensitivi	ty to Δr :	75
16000	250	70
8000	250	96
4000	250	98
2000	250	100
1000	250	102
500	250	104
Sensitivi	ty to Δz :	
1000	1000	119
1000	500	111
1000	250	102
1000	125	105
1000	63	103

$$I_h = 187.5 \text{ m}$$

 $I_v = 50 \text{ m}$

Lower $\Delta r \rightarrow$ higher v_{max}

Lower $\Delta z \rightarrow \text{lower } v_{\text{max}}$

After additional tests: $\Delta r = 1 \text{ km if } r < 64 \text{ km}$ $\Delta r = 16 \text{ km for } r = 1500 \text{ km}$

(2/5) Turbulence length scale

$M \equiv rv + fr^2/2 \qquad I_v = 200 \text{ m}$ *z* = 1.1 km 2.5 (a) $I_{h} = 0 \text{ m}$ $M (\times 10^6 m^2 s^{-1})$ 2.0 $l_v = 200 \text{ m}$ 1.5 $v_{\rm max} \ ({\rm m} \ {\rm s}^{-1})$ W (km) Δr (m) 1.0 16000 72 32.0 0.5 97 8000 16.0 4000 113 8.0 0.0-20 30 40 50 10 60 2000 110 8.0 375 T 114 1000 9.0 (b) $l_{\rm h}$ = 188 m 8.5 500114 370 $l_{\rm h} = 750 {\rm m}$ 250114 8.5 $l_{\rm h} = 3000 {\rm m}$ (\mathbf{x}) 365 -⊕[⊕] 360 · 355 -350 20 10 30 40 50 60 r (km)

(2/5) Turbulence length scale

(2/5) Turbulence length scale

(2/5) Turbulence length scale - summary

If $I_h \rightarrow 0$ m then maximum intensity but unnatural

If $I_h \approx 3000$ m then there is no setup that produces intensity greater than 70 m/s

Gradient of moist entropy in the eyewall $-1.7 \times 10^{-3} \text{ m s}^{-2} \text{ K}^{-1}$

After the comparison with observations $I_h \approx 1500$ m and $I_v \approx 100$ m seems appropriate.

(3/5) Ratio of surface exchange coefficients

Simulations and theory \rightarrow maximum intensity very sensitive to C_{E}/C_{D}

Observations $\rightarrow 0.5 < C_E/C_D < 1.5$ $\rightarrow C_E = 1.2 \times 10^{-3}$

(4/5) Liquid water fall velocity

(4/5) Liquid water fall velocity

$$V_t = 0 \qquad s_r = (c_p + c_l r_t) \ln T - R_d \ln p_d + \frac{L_v q_v}{T} - R_v q_v \ln(\mathcal{H})$$
$$V_t \to \infty \qquad s_p = c_p \ln T - R_d \ln p_d + \frac{L_0 q_v}{T} - R_v q_v \ln(\mathcal{H})$$

 θ_e same as before

$$l_h = 375 \text{ m}$$

Setup: sounding/thermodynamics	$v_{\rm max}~({\rm m~s^{-1}})$
control / reversible	64
control / pseudoadiabatic	103
reversible / reversible	40
pseudoadiabatic / pseudoadiabatic	104

(5/5) Equation set

Summary

Maximum intensity occurs when:

- (1) $\Delta r = 1$ km or less and $\Delta z = 250$ m or less
- (2) inviscid flow in the radial direction \rightarrow unnatural structures
- (3) pseudoadiabatic thermodynamics (V_t ~ 10 m/s and greater) \rightarrow not applicable
- (4) conservative set of equations
- Greatest sensitivity to the specification of turbulence intensity.
- $I_h \approx 1500$ m and $I_v \approx 100$ m are reasonable settings.
- Less sensitivity to C_E/C_D than theory predicts for greater intensity of turbulence.

Thank you for your attention!