Predictability and Chaos

Darko Koracin Desert Research Institute University of Nevada Reno, NV

1st Split Workshop in Atmospheric Physics and Oceanography (SWAP) 22 - 31 May 2009, Split, Croatia

Predictability

- Predictability is ability to estimate the future state of a dynamical system knowing the involved physical processes and initial conditions of the system. In other words, the predictability of the system refers to the degree of accuracy with which it is possible to predict the future state of the system.
- Intuitively The best example is the predictability of weather and climate

Prediction

- The state of atmosphere is continuously evolving under a set of physical laws.
- Dynamical prediction

The process of predicting the future state of the atmosphere is based on temporal extrapolation of the present state using the physical laws.

Statistical prediction

The extrapolation rules are determined empirically based on past states of the system.

Causes of imperfect predictions

- Incomplete (imperfect) knowledge of the initial state of the system (atmosphere)
- Incomplete (imperfect) knowledge of the boundary conditions (atmosphere)
- Imperfect methods (models) by which the temporal and spatial extrapolation was performed due to incomplete knowledge of the physical laws.
- Imperfect numerical representations and computation techniques.

Great discovery – predictability limits

- Early studies: Poincare (1903) "Although we know all physics laws exactly, we could know initial conditions (IC) only approximately. Small changes in the IC produce very great ones in the final phenomena. A small error in the former can produce an enormous error in the latter and prediction becomes impossible."
- Until the late 1950s scientists thought that better computers and better input data would always lead to better and better accuracy of weather forecasts.
- First challenge Ed Lorenz (around 1956). He designed a model a set of 12 equations representing certain atmospheric conditions and solved it numerically on an available computer. After one of the completed runs, he repeated the same run, which was interrupted for some reason in the middle. He took the current outputs and inserted them as inputs to continue the interrupted run.
- After some time into the simulation, he noticed that the results of the new run started to differ and then completely diverge from the original run.
- At first he suspected a problem with the computer, but the repeated original run produced the expected results.
- After some analysis and thinking, he discovered that the problem was in the precision of the interrupted output. The print out had less significant digits than the precision of the computer.
- He noticed that the small difference between something retained to six decimal places and rounded off to three had amplified in the course of two months. Eventually, the differences became as big as the values itself.
- Lorenz concluded that we cannot make forecasts two months ahead even if we have a perfect model. Small errors (or even uncertainties) would amplify until they became too large. For example, if an initial temperature entered in the computer is 12.235C instead of 12.23528C, that would imply the growth of differences between the two runs that would eventually lead to a completely different forecast at the end of the simulation.

Lorenz discovery – predictability limits

- Lorenz' discovery led to rapid development of theories of how deterministic systems such as weather forecasts can lead to predictability break up and chaotic behavior.
- Current studies show that increased complexity of the physical system actually can reduce the level of chaotic behavior.
- CHAOS: Aperiodic, long-term behavior of a bounded, deterministic system that exhibits sensitive dependence on initial conditions and control parameters.
- *** Chaos (greek): Origin of the Universe (Great Emptiness); also: State of a system without order.

$$\frac{dX}{dt} = sY - sX$$
$$\frac{dY}{dt} = -XZ + rX - Y$$
$$\frac{dZ}{dt} = XY - bZ$$
$$s = 10; r = 28; b = \frac{8}{3}$$

Predictability problem –Lorenz' famous system of thermal convection in the atmosphere (in 1960s)

X – size of the convective motion

Y – proportional to the temperature difference between ascending and descending fluids

Z – proportional to the deviation of the vertical temperature profile from a linear function.

s – Prandtl number

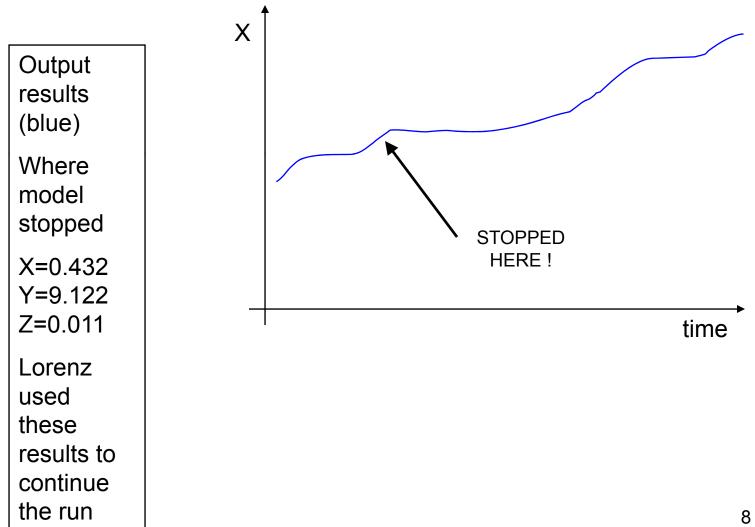
$$r = \frac{R_a}{R_c}$$

$$R_a - \text{Rayleigh number}; R_c - \text{critical Rayleigh number}$$

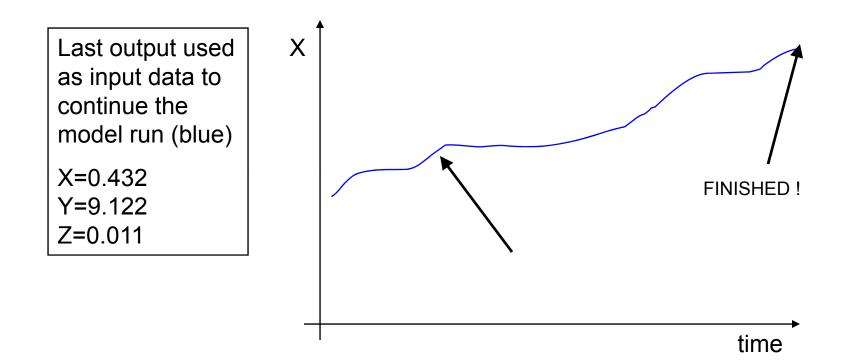
$$b = \frac{4}{1+a^2}$$

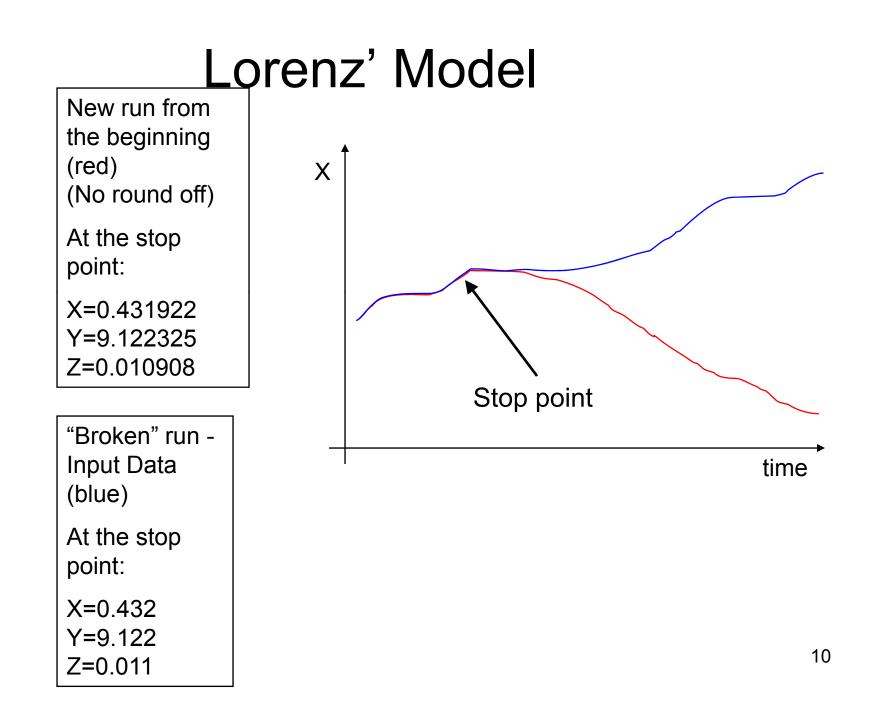
$$a - \text{constant in the critical Rayleigh number}$$

Lorenz' Model



Lorenz' Model





Characteristics of predictability

- Weather and climate models are complex systems with known problems in accurate predictability. However, even extremely simple systems can show the lack of predictability.
- Let us take an example of a system that should be easy to understand.

Predictability – simple linear iteration formula

Bank - simple interest formula

$$X_{n+1} = r X_n$$

Xn+1 – New value

R – Interest ratio

Xn – Initial value

After successive multiplications

$$X_{n+1} = r X_n = r (r X_{n-1}) = r r (r X_{n-2}) = \dots = r^{n+1} X_0$$

So, if we know the initial value and the interest rate, we can easily calculate the new value

The new value can be uniquely calculated for any combination of r, n, and $X_0 = \frac{12}{3}$

Simple nonlinear system – Logistic feedback iterator

- Assume a species of cell living in a contained environment (e.g., fish tank) with constant food supply and temperature. There will be a maximum population of size *N* that can be supported by the environment
- P_n is the actual population at time n
- If P_n is smaller than N, we expect population to grow
- If P_n is greater than N, we expect population to decrease
- A growth rate *r* can be defined as

$$r = \frac{P_{n+1} - P_n}{P_n}$$

Logistic Feedback Iterator – Verhulst Model (1845)

 Verhulst assumed that the growth rate at time n should be proportional to 1-P_n (the fraction of the environment that is not yet used by the population at time n):

$$\frac{P_{n+1}-P_n}{P_n} \propto 1-P_n$$

Introduce a suitable constant *r* (e.g., speed of process)

$$\frac{P_{n+1}-P_n}{P_n}=r\left(1-P_n\right)$$

Solving this equation for P_{n+1} , yields the population model $P_{n+1} = P_n + r P_n (1 - P_n)$

• This is called the LOGISTIC MODEL – needs to be iterated (nonlinear expression) 14

Logistic Feedback Iterator – Verhulst Model (1845) $P_{n+1} = P_n + r P_n (1 - P_n)$

• Iteration:

.

Take P0=0.01 (initial population is 1% of the maximum population) r=3

$$P_{1} = P_{0} + r P_{0} (1 - P_{0}) \qquad P_{0} = 0.01 P_{1} = 0.0397 P_{2} = P_{1} + r P_{1} (1 - P_{1}) \qquad P_{2} = 0.15407173 P_{3} = P_{2} + r P_{2} (1 - P_{2}) \qquad P_{3} = 0.545072626044...$$

Observe: Continued iteration requires higher and higher computational accuracy if we insist on exact results. Although this seems to be trivial, it leads to serious problems.

$$X_{n+1} = X_n + r X_n (1 - X_n)$$

This still looks simple

Let us take r=3, n=100, and X_0 =0.01

0.03970000000000
 0.154071730000000

 X_{n+1}

- 3. 0.545072626044421
- 4. 1.288978001188801
- $5. \quad 0.171519142109176$
- 6. 0.597820120107099
- 7. 1.319113792413797
- 8. 0.056271577646257
- 9. 0.215586839232630
- 10.0.722914301179573
- 20. 0.596529312494691
- 50. 1.313996746606757
- 100. 0.3937885956363978

Predictability – iteration formula X_{n+1} $X_{n+1} = X_n + r X_n (1 - X_n)$ 0.03970000000000 2 0.15407173000000 This still looks simple 3. 0.545072626044421

Let us take r=3, n=100, and X_0 =0.01

What if we stop at the 10th iteration and truncate the result to only 3 decimal places

0.722914301179573 => 0.722

Compare the "old" and the "new" iterations:

10.0.722914301179573 20. 1.309731022679916 20. 0.596529312494691 50. 1.084204314601272 50. 1.313996746606757 100. 1.230459200984260 100. 0.393788595636378 **NEW** OLD

1.288978001188801

0.171519142109176

0.597820120107099

1.319113792413797

0.056271577646257

17

9. 0.215586839232630

4

5.

6.

7

8.

$$X_{n+1} = X_n + r X_n (1 - X_n)$$

What if we stop at 10th iteration and truncate the results to only 3 decimal places

0.722914301179573 => 0.722

Compare the "old" and the "new" iterations:

```
Striking result: Even at 20<sup>th</sup> iteration – the results are not correlated any more
```

20. 1.309731022679916
50. 1.084204314601272
100. 1.320450200084266

100. 1.230459200984260

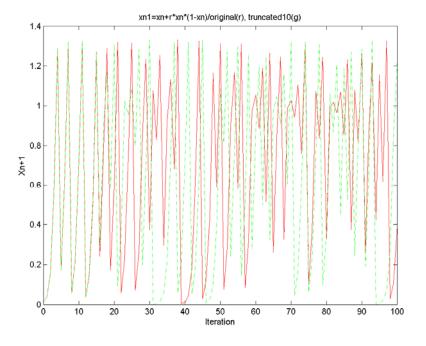
- X_{n+1} 1. 0.0397000000000000
- 2. 0.15407173000000
- 3. 0.545072626044421
- 4. 1.288978001188801
- 5. 0.171519142109176
- 6. 0.597820120107099
- 7. 1.319113792413797
- 8. 0.056271577646257
- 9. 0.215586839232630
- 10.0.722914301179573
- 20. 0.596529312494691
- 50. 1.313996746606757
- 100. 0.393788595636378

OLD

18

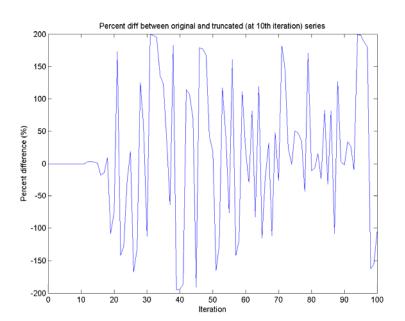
Compare the "old" and the "new" iterations:

Striking result: After 20th iteration – the results are not correlated



Time series:

Original (red), truncated (green) expressions

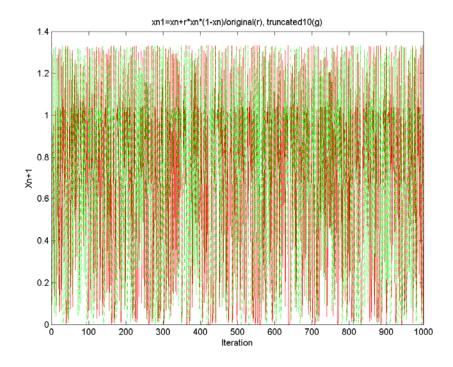


Time series:

% difference between original and truncated expressions 19

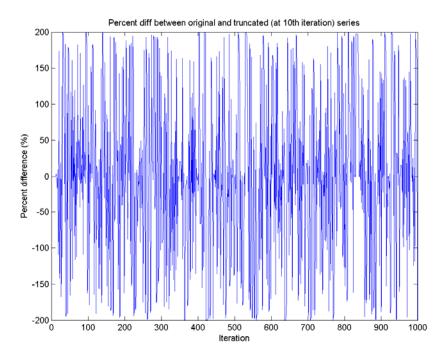
Compare the "old" and the "new" iterations:

Striking result: After 1000th iteration – the results are not correlated at all



Time series:

Original (red), truncated (green) expressions



Time series:

% difference between original and truncated expressions 20

What if we just re-write the same expression differently?

$$X_{n+1} = X_n + r X_n (1 - X_n) =$$

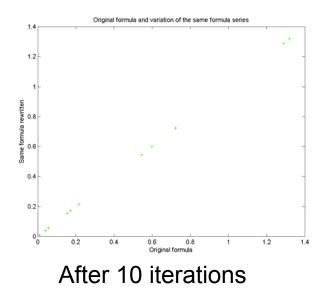
= $X_n + r X_n - r X_n^2 =$
= $(1 + r) X_n - r X_n^2$
Notice that
 $X_{n+1} = X_n + r X_n (1 - X_n) \&$
 $X_{n+1} = (1 + r) X_n - r X_n^2$
are algebraically completely identical,
but computers think differently!!!

Difference

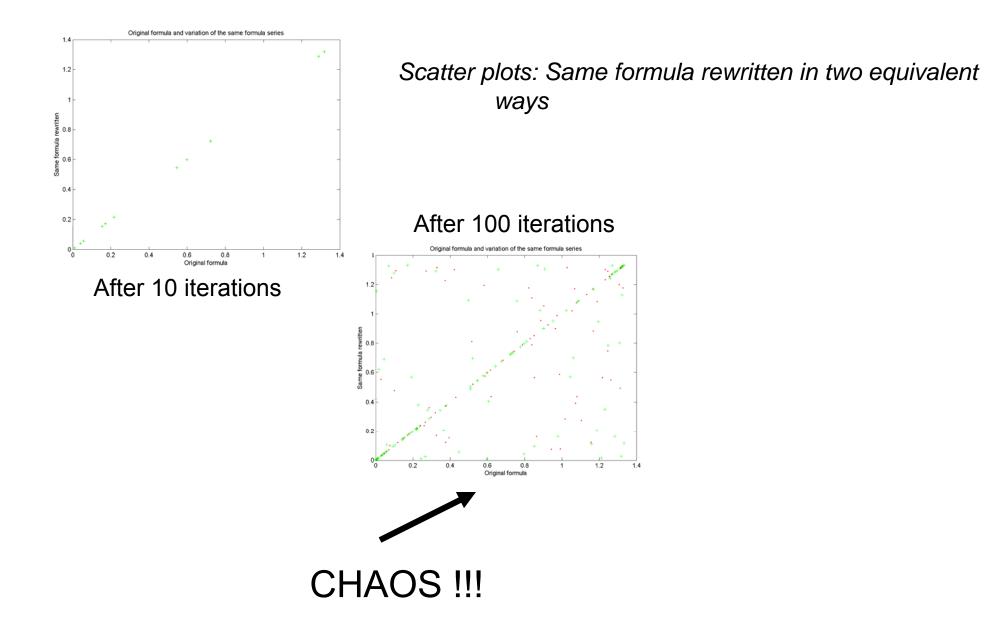
Iteration
$$X_{n+1} = X_n + r X_n (1 - X_n)$$

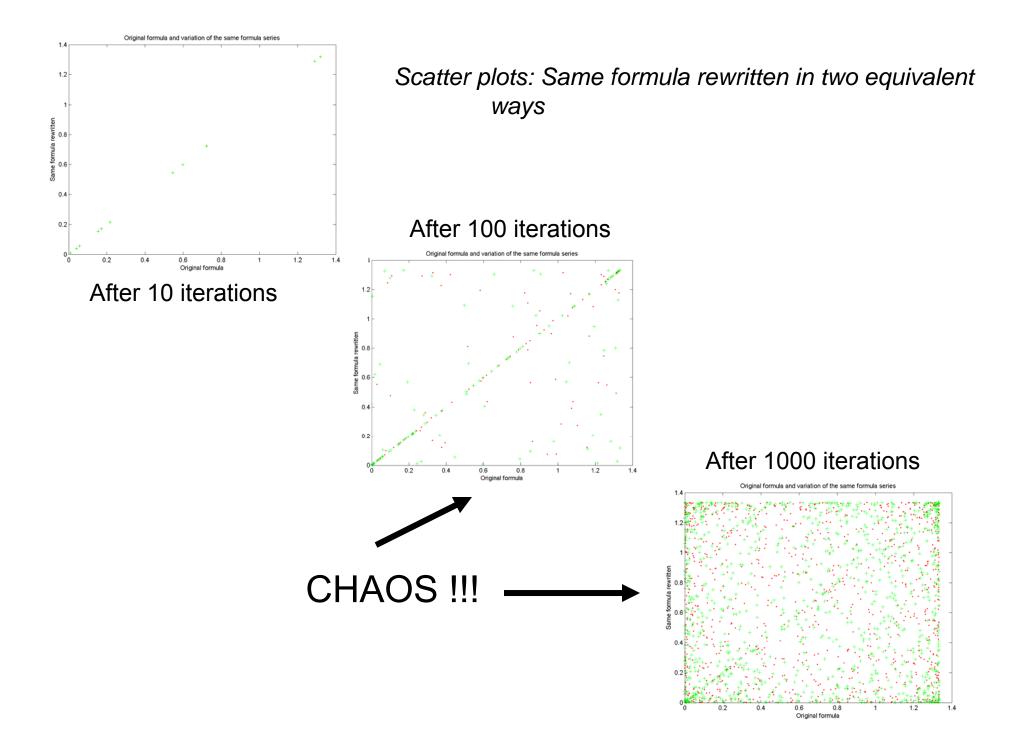
0.010000000000000	0.0100000000000000	0.0000000000000000000000000000000000000
0.215586839232630	0.215586839232638	-0.0000000000000000
0.171084846701943	0.171084846695175	0.00000000006768
1.232112462387190	1.232112456898180	0.00000005489003
0.002909156902851	0.002908166812190	0.00000990090661
0.586382615268778	0.575607525195148	0.010775090073631
0.972495402397394	0.988950671746734	-0.016455269349340
0.986032164226998	0.588027498266818	0.398004665960180
1.245281926676870	0.746693837160232	0.498588089516638
		-0.356879337279099
		-1.187092643958690
	0.215586839232630 0.171084846701943 1.232112462387190 0.002909156902851 0.586382615268778 0.972495402397394 0.986032164226998	0.215586839232630 0.215586839232638 0.171084846701943 0.171084846695175 1.232112462387190 1.232112456898180 0.002909156902851 0.002908166812190 0.586382615268778 0.575607525195148 0.972495402397394 0.988950671746734 0.986032164226998 0.588027498266818 1.245281926676870 0.746693837160232 0.821069312375225 1.177948649654320

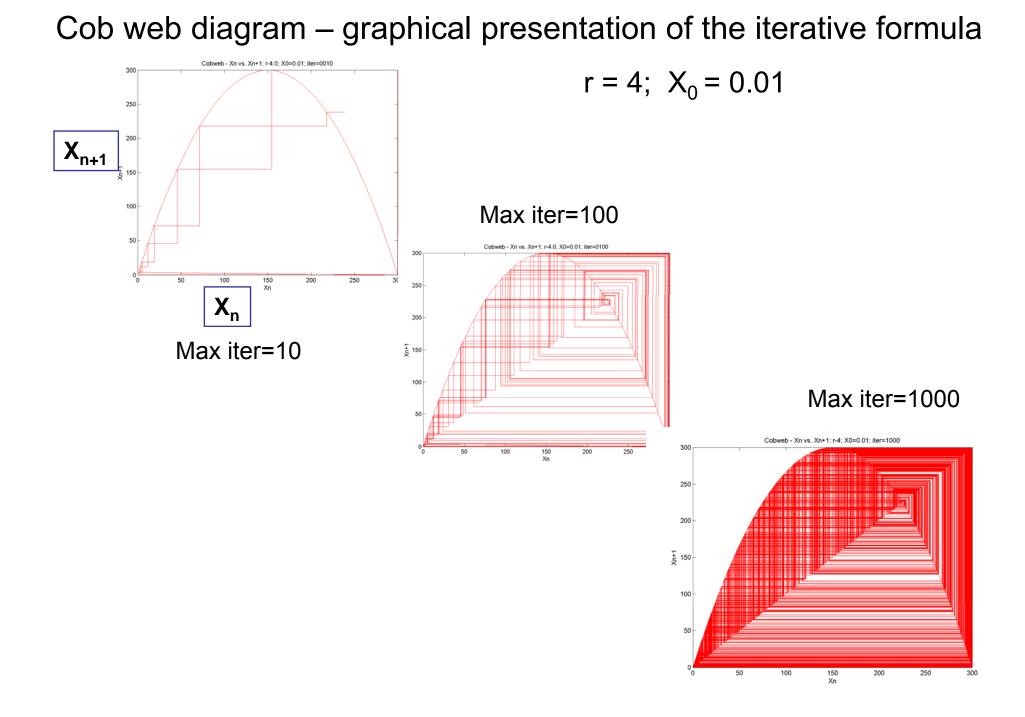
 $X_{n+1} = (1+r) X_n - r X_n^2$



Scatter plots: Same formula rewritten in two equivalent ways







Measure of Chaos – Ljapunov Exponent

• Assume a small arbitrary initial error E₀

Total amplification factor :
$$\left| \frac{E_n}{E_o} \right|$$

$$\frac{E_n}{E_o} = \frac{E_n}{E_{n-1}} \frac{E_{n-1}}{E_{n-2}} \dots \frac{E_1}{E_o}$$

From the error growth of the linear system $X_{n+1} = c X_n$

The error growth is:
$$\left|\frac{E_n}{E_o}\right| = \frac{c^n X_0}{X_0} = c^n$$
 i.e.,
 $\ln \left|\frac{E_n}{E_o}\right| = n \ln c \implies \ln c = \frac{1}{n} \ln \left|\frac{E_n}{E_o}\right|$
 $\ln c = \frac{1}{n} \ln \left|\frac{E_n}{E_{n-1}} \frac{E_{n-1}}{E_{n-2}} \dots \frac{E_1}{E_o}\right| = \frac{1}{n} \sum_{k=1}^n \ln \left|\frac{E_k}{E_{k-1}}\right|$

Measure of Chaos – Ljapunov Exponent

• Approximate a small arbitrary error ε as the previous error and:

$$E_{k+1} = f(x_k + \varepsilon) - f(x_k)$$

where $f(x) = r x (1-x)$
$$\ln c = \frac{1}{n} \sum_{k=1}^n \ln \left| \frac{E_k}{\varepsilon} \right| = \frac{1}{n} \sum_{k=1}^n \ln \left| \frac{f(x_{k-1} + \varepsilon) - f(x_{k-1})}{\varepsilon} \right| = \frac{1}{n} \sum_{k=1}^n \ln \left| f'(x_{k-1}) \right|$$

For $n \to \infty$ we obtain the Ljapunov exponent λ

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left| f'(x_{k-1}) \right|$$

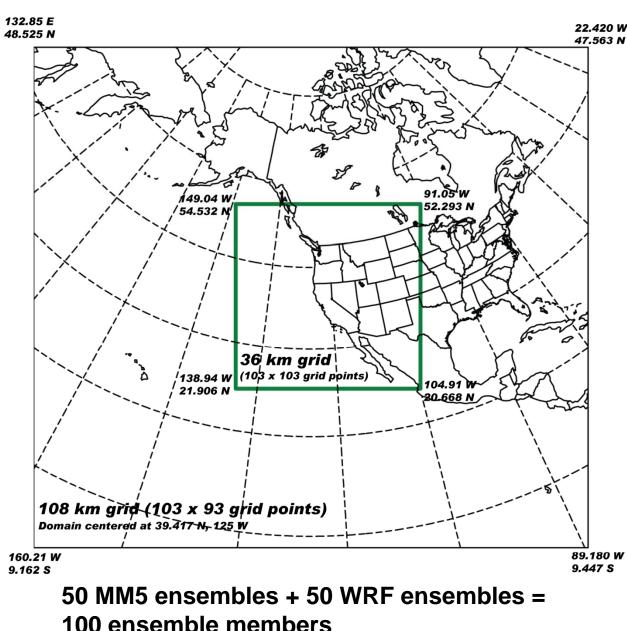
For $\lambda > 0$ => system is chaotic

For $\lambda < 0$ or $\lambda = 0$ => system is stable

Improving weather and climate forecasts – ensemble forecasting

- Epstein (1969) Since the skill of the single deterministic forecast decreases in time, stochastic (probabilistic) forecasts should be considered. The only feasible way is "ensemble forecasting" – several (many) model forecasts are performed by introducing perturbations in initial conditions (IC) and model's physics.
- IC perturbations: determining fastest growing errors of the forecasts
- NCEP "Breeding growing perturbations" start with initial perturbations and after 1.5 days use differences between the model and forecasts to scale perturbations for a new run.
- ECMWF "Singular vectors" use linear tangent model to obtain fastest-growth errors.
- Canadian Center using an ensemble of data assimilation systems (considering observational errors and adding random numbers to the observations) and including different parameters in the physical parameterizations of the model in different ensembles to create IC.
- Additional way "Super-ensemble" joint probabilistic forecast from two or more models (single forecasts or ensembles).

Chaos – Example: Regional/mesoscale models MM5 and WRF



- MM5 Mesoscale Model 5 (Grell et al. 1994; NCAR).
- WRF Weather and Research Forecasting model (Skamarock et al. 2005)
- Simultaneous runs of MM5 and WRF for 15 days (12 – 27 Dec 2008)
- Initial/Boundary conditions: GFS (0.5 x 0.5 deg grid resolution for 0-168 hours, 2.5 x 2.5 deg for > 168 h – 360 hours)
- Domain setup: 2domains (I: 108 km grid; 103 x 93 grid points; II: 36 km grid; 103 x 103 grid points) ³⁰

MM5 simulations	PBL scheme	Goud Microphysics	Cumul us Scheme	Radiation					
Control	Eta M-Y	Reisner 2	Kain-Fritsch	RRTM (FRAD=4)	<u>Stan2stion</u> Control	<u>FBL-Scheme</u> Welloc-Yamada-Janjic	<u>Cloud Microphysics</u> Thompson	<u>Cumulus Scheme</u> Xain-Peitach	<u>Radiation (SN/LN)</u> Dudhia/RRIM
1	Burk-Thomps on	Reisner 2	Grell	CCM2 (FRAD=3)	1	Wellor-Yamada-Janjic	Goddard microphysics	Betts-Willer	GEDT (GERT
2	Burk-Thomps on	Reisner 2	Betts-Miller	CCM2 (FRAD=3)	2	Wellor-Yamada-Janjic	Goddard microphysics	Kain-Pritach	GFOL/GFOL
3	Eta M-Y	Goddard (GFSC)	Betts-Miller	BRTM (FRAD=4)	3	Wellos-Yamada-Janjic	Lin et al.	Xain-Peitsch	Goddard/RRIN
4	Burk-Thomps on	Goddard (GFSC)	Betts-Miller	RRTM (FRAD=4)	۵	Wellos-Yamada-Janjic	Eta miccophysica	Xain-Peitsch	GFOL/GFOL
5	Gavno-Seaman	Schultz	Betts-Miller	CCM2 (FRAD=3)	5	Wellor-Yəmədə-Jənjir	Eta miccophysica	Betts-Willer	CAM/CAM
6	MBE	Simple ice (Dudhia)	Kain-Fritsch	CCM2 (FRAD=3)	6	Mellos-Yamada-Janjic	Eta miccophysica	Kain-Peitsch	CAM/CAM
7	Gavno-Seaman	Goddard (GPSC)	Betts-Miller	CCM2 (FRAD=3)	7	Wellos-Yamada-Janjic	Thompson	Betts-Willer	Budhie/RRIM
	· ·				3	Wellos-Yamada-Janjic	Goddaed miceophysics	Grell-Bevenyi	GFDL/GF0L
8	MBE	Simple ice (Dudhia)	Grell	RRTM (FRAD=4)	9	Wellos-Yamada-Janjic	Goddard microphysics	Betts-Willer	CAM/CAM
9	Burk-Thomps on	Reisner 2	Grell	CCM2 (FRAD=3)	10	Wellos-Yamada-Janjic	Thompson	Betts-Willer	CAM/CAM
10	MBE	Goddard (GFSC)	Grell	CCM2 (FRAD=3)	11	Wellor-Yamada-Janjic	Thompson	Betts-Willer	Goodecd/RRIM
11	MBE	Goddard (GPSC)	Kain-Fritsch	RRTM (FRAD=4)	12	Mellor-Yamada-Janjic	Lin et al.	Grell-Bevenyi	Goddard/RRIM
12	Eta M-Y	Reisner 2	Grell	CCM2 (FRAD=3)	13	Wellos-Yamada-Janjic	Lin et al.	Betts-Miller	GFOL/GFOL
13	MBE	Reisner 2	Kain-Fritsch	Dudhia (FRAD=2)	14	Wellor-Yamada-Janjic	Goddard microphysics	Betts-Miller	GPDL/RRB6
14	Gayno-Seaman	Reisner 2	Grell	Dudhia (FRAD=2)	15	Mellor-Yamada-Janjie	Lin et al.	Kain-Peitsch	Dudhis/GPDL
15	Burk-Thomas on	Reisner 2	Betts-Miller	Simple cloud (FRAD=1)	16	₩elloz-Yamada-Janjic ₩elloz-Yamada-Janjic	Eta miccophysica WRF-single mom (6)	Xəin-Peitsch Betts-Willer	Budhia/CAM Goddard/ARIM
15			Grell		17	omelloz-Yamada-Janjic	WRF-single mam (8)	Kain-Peitach	Goddecd/Akim
	Gayno-Seaman	Simple ice (Dudhia)		Simple cloud (FRAD=1)	19	YSU (new KORF)	Bta miccophysics	Kain-Peitsch	GEDT/GERT
17	Gayno-Seaman	Reisner 2	Betts-Miller	Dudhia (FRAD=2)	20	YSU (new MAR)	Lin et al.	Betts-Willer	CEDT/CENT
18	Burk-Thomps on	Goddard (GPSC)	Grell	Dudhia (FRAD=2)	21	YSU (new bill)	Goddard microphysics	Betts-Willer	Goddard/ARIM
19	Burk-Thomps on	Schultz	Kain-Fritsch	Dudhia (FRAD=2)	22	YSU (new MAR)	Lin et al.	Xain-Peitsch	CAM/CAM
20	MBE	Simple ice (Dudhia)	Kain-Fritsch	Simple cloud (FRAD=1)	23	YSU (new MAR)	Lin et al.	Betts-Willer	CAN/CAN
21	Eta M-Y	Reisner 2	Kain-Fritsch	RRTM (FRAD=4)	24	YSU (new WAP)	Goddard microphysics	Betts-Willer	Budhis/RRIM
22	Burk-Thomps on	Reisner 2	Grell	RRTM (FRAD=4)	25	YSU (new MAP)	Thompson	Gaell-Bevenyi	GEOF/GEOF
23	Burk-Thomps on	Simple ice (Dudhia)	Kain-Fritsch	CCM2 (FRAD=3)	26	YSU (new MAR)	Eta miccophysica	Betts-Willer	Goddard/RRIM
24	Burk-Thomps on	Simple ice (Dudhia)	Betts-Miller	Simple cloud (FRAD=1)	27	YSU (new MRF)	Eta miccophysica	Kain-Peitsch	CRM/CRM
25	Gavno-Seaman	Goddard (GFSC)	Kain-Fritsch	Dudhia (FRAD=2)	28	YSU (new MRP)	discison	Kain-Peitsch	Goddard/RRIM
26					29	YSU (new MRP)	WRF-single mam(6)	Xain-Peitsch	Goddard/RRIN
	Burk-Thomps on	Schultz	Grell	RRTM (FRAD=4)	30	YSU (new MARP)	WRF-single mam(3)	Betts-Miller	Dudhis/RRIM
27	Eta M-Y	Simple ice (Dudhia)	Grell	Dudhia (FRAD=2)	31	Pleim-Xiu	Eta miccophysica	Betts-Willer	Goddard/RRIN
28	Burk-Thomps on	Reisner 2	Kain-Fritsch	Dudhia (FRAD=2)	32	Pleim-Xiu	Lin et al.	Betts-Willer	Goddard/RRIM
29	Buck-Thomas on	Beisner 2	Betts-Miller	BRTM (FRAD=4)	33	Pleim-Xiu	Eta miccophysica	Grell-Devenyi	GLOT/GLUT
					34	Pleim-Xiu	Goddaed miccophysics	Grell-Bevenyi	Dudhis/RRIM

....

MM5 – 50 ensemble runs

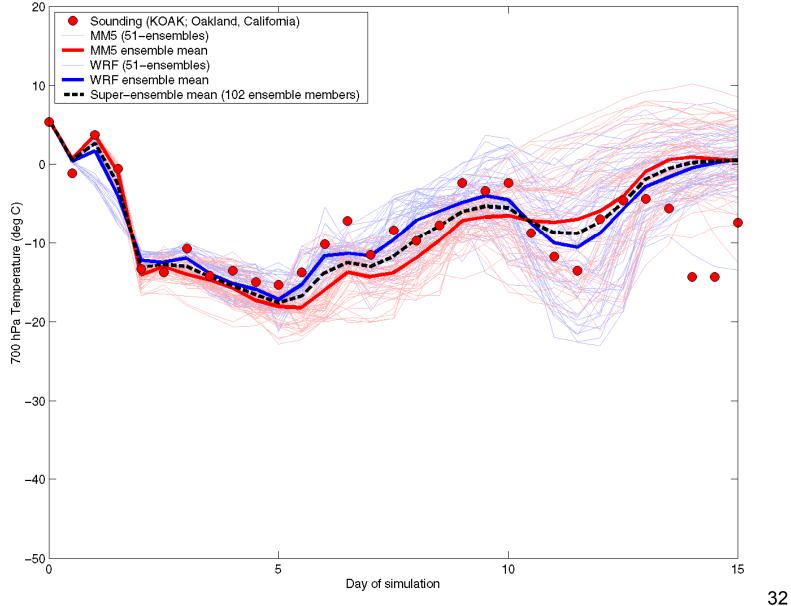
WRF – 50 ensemble runs

.

Physics parameterization options (PBL, cloud mic., Cu, Rad) ³¹

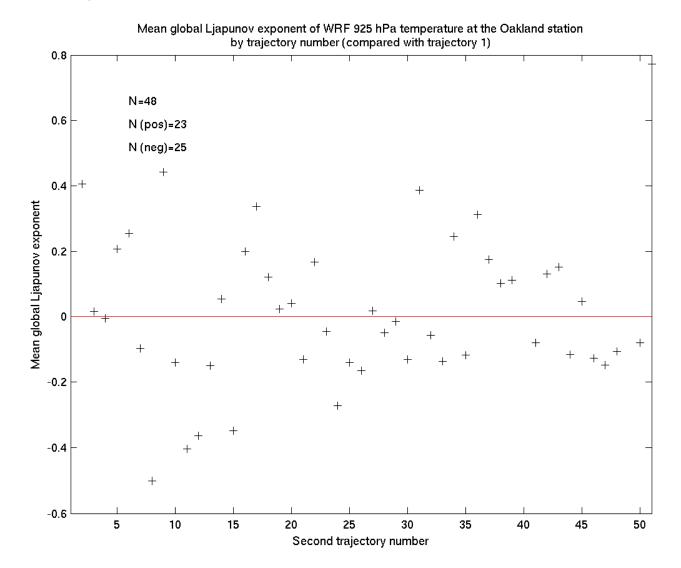
Super-ensemble – MM5 & WRF

700 hPa temperature at Oakland, California (72493; -122.235278 lon, 37.719444 lat)

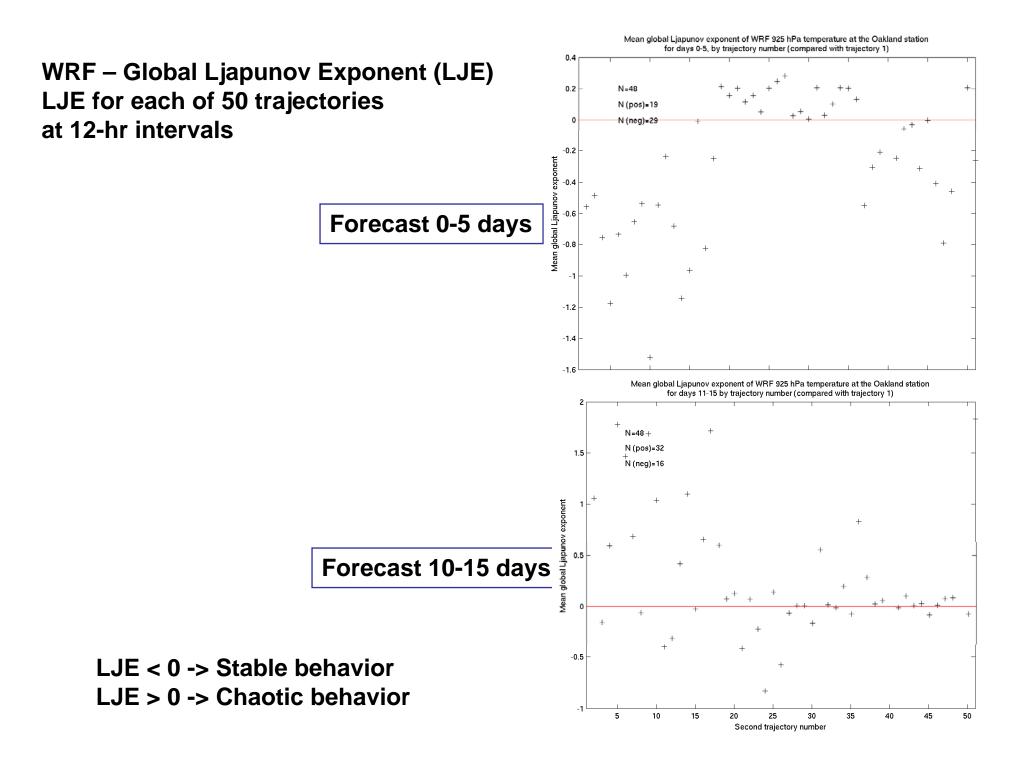


50 ensemble trajectories for MM5 (red) and 50 ensemble trajectories for WRF (blue)

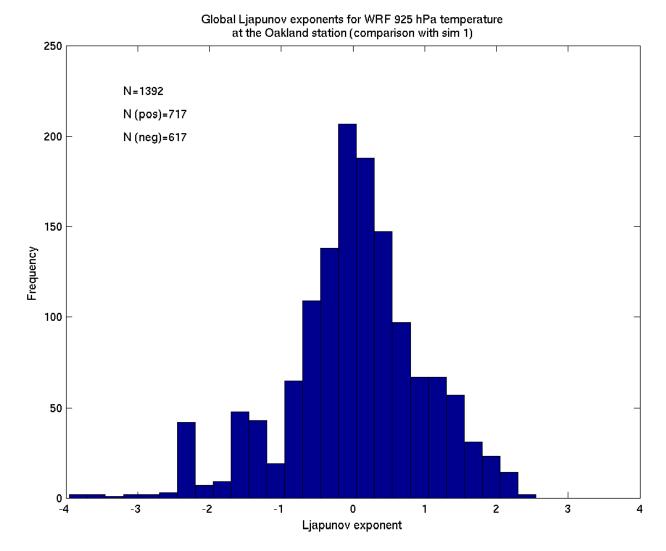
WRF – Global Ljapunov Exponent (LJE) – Mean LJE for each of 50 trajectories



LJE < 0 -> Stable behavior LJE > 0 -> Chaotic behavior

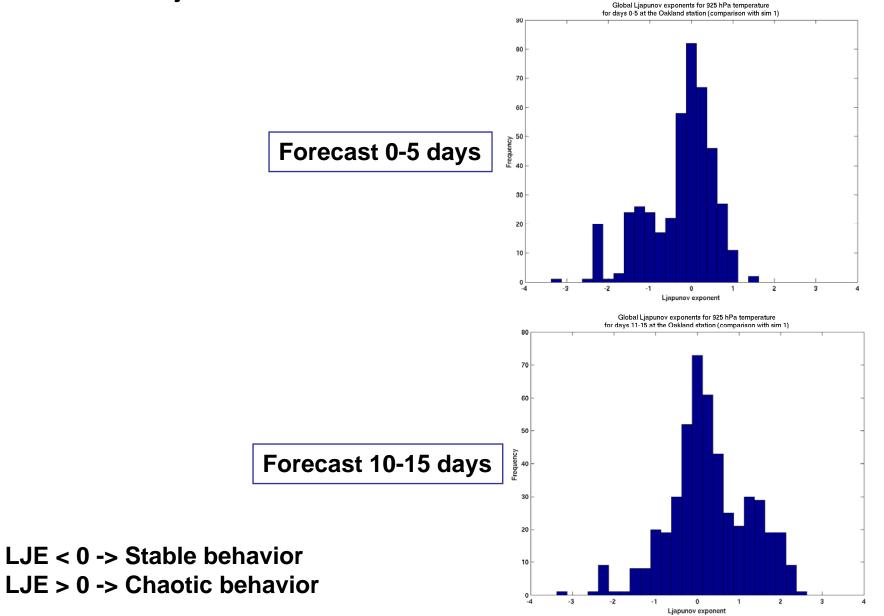


WRF – Local Ljapunov Exponent (LJE) – LJE in successive steps for each of 50 trajectories at 12-hr intervals



LJE < 0 -> Stable behavior LJE > 0 -> Chaotic behavior

WRF – Local Ljapunov Exponent (LJE) – LJE in successive steps for each of 50 trajectories at 12-hr intervals



Chaos – What did we learn?

- Chaos is present in many simple and complex models and algorithms.
- Chaos is the aperiodic, long-term behavior of a bounded, deterministic system that exhibits sensitive dependence on initial conditions and algorithm parameters.
- In essence, the computational error of a parameter grows and readily exceeds the value of the iterated (predicted) parameter. Consequently, chaos represents a break in the predictability in dynamical systems.
- The roots of chaos are intrinsically linked to general number representation and the limitations of any computers in precision and algebraic operations.
- Positive Ljapunov exponent is one of the measures of chaotic behavior.

Summary characteristics of chaotic systems

- The governing equations of these systems are nonlinear
- The chaotic systems are aperiodic
- They have sensitive dependence on initial conditions
- They have sensitive dependence on boundary conditions
- They are governed by one or more control parameters, a small change in which can cause the chaos to appear or disappear