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Predictability

* Predictability is ability to estimate the future
state of a dynamical system knowing the
iInvolved physical processes and initial
conditions of the system. In other words, the
predictability of the system refers to the
degree of accuracy with which it is possible
to predict the future state of the system.

* Intuitively — The best example is the
predictability of weather and climate



Prediction

The state of atmosphere is continuously
evolving under a set of physical laws.

Dynamical prediction

The process of predicting the future state of
the atmosphere is based on temporal
extrapolation of the present state using the
physical laws.

Statistical prediction

The extrapolation rules are determined
empirically based on past states of the
system.



Causes of imperfect predictions

Incomplete (imperfect) knowledge of the initial
state of the system (atmosphere)

Incomplete (imperfect) knowledge of the boundary
conditions (atmosphere)

Imperfect methods (models) by which the temporal
and spatial extrapolation was performed due to
iIncomplete knowledge of the physical laws.

Imperfect numerical representations and
computation techniques.



Great discovery — predictability limits

Early studies: Poincare (1903) — “Although we know all physics laws exactly, we could know
initial conditions (IC) only approximately. Small changes in the IC produce very great ones in
the final phenomena. A small error in the former can produce an enormous error in the latter
and prediction becomes impossible.”

Until the late 1950s scientists thought that better computers and better input data would
always lead to better and better accuracy of weather forecasts.

First challenge — Ed Lorenz (around 1956). He designed a model — a set of 12 equations
representing certain atmospheric conditions and solved it numerically on an available
computer. After one of the completed runs, he repeated the same run, which was
interrupted for some reason in the middle. He took the current outputs and inserted them as
inputs to continue the interrupted run.

After some time into the simulation, he noticed that the results of the new run started to
differ and then completely diverge from the original run.

At first he suspected a problem with the computer, but the repeated original run produced
the expected results.

After some analysis and thinking, he discovered that the problem was in the precision of the
interrupted output. The print out had less significant digits than the precision of the
computer.

He noticed that the small difference between something retained to six decimal places and
rounded off to three had amplified in the course of two months. Eventually, the differences
became as big as the values itself.

Lorenz concluded that we cannot make forecasts two months ahead even if we have a
perfect model. Small errors (or even uncertainties) would amplify until they became too
large. For example, if an initial temperature entered in the computer is 12.235C instead of
12.23528C, that would imply the growth of differences between the two runs that would
eventually lead to a completely different forecast at the end of the simulation. 5



Lorenz discovery — predictability limits

* Lorenz discovery led to rapid development of
theories of how deterministic systems such as
weather forecasts can lead to predictability break up
and chaotic behavior.

« Current studies show that increased complexity of
the physical system actually can reduce the level of
chaotic behavior.

« CHAOS: Aperiodic, long-term behavior of a
bounded, deterministic system that exhibits
sensitive dependence on initial conditions and
control parameters.

« " Chaos (greek): Origin of the Universe (Great

Emptiness); also: State of a system without order.
6
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dt TS Predictability problem —Lorenz’ famous
A sy system of thermal convection in the
dt atmosphere (in 1960s)
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X —size of the convective motion

Y — proportional to the temperature difference between
ascending and descending fluids

Z — proportional to the deviation of the vertical temperature
profile from a linear function.

s — Prandtl number

R R, — Rayleigh number; R, — critical Rayleigh number

4 a — constant in the critical Rayleigh number
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Lorenz’ Model
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New run from
the beginning
(red)

(No round off)
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Characteristics of predictability

* Weather and climate models are complex
systems with known problems in accurate
predictability. However, even extremely
simple systems can show the lack of
predictability.

» Let us take an example of a system that
should be easy to understand.

11



Predictability — simple linear iteration
formula

Bank — simple interest formula

Xn+1: r ><n

Xn+1 — New value
R — Interest ratio

Xn — Initial value

After successive multiplications

Xn+1: an:r(an—l):rr(rxn—z): """ :rn+1 XO

So, if we know the initial value and the interest rate, we can easily calculate the
new value

The new value can be uniquely calculated for any combination of r, n, and X, 12



Simple nonlinear system — Logistic feedback iterator

« Assume a species of cell living in a contained environment
(e.g., fish tank) with constant food supply and temperature.
There will be a maximum population of size N that can be
supported by the environment

« P, Is the actual population at time n
» If P, is smaller than N, we expect population to grow

» If P, is greater than N, we expect population to decrease
« A growth rate r can be defined as

P —-P

r — n+1

P

n
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Logistic Feedback lterator —
Verhulst Model (1845)

« Verhulst assumed that the growth rate at time n should be proportional to 1-
P, (the fraction of the environment that is not yet used by the population at
time n):

I:)n+l - I:)n o] — Pn

Pn
Introduce a suitable constant r (e.g.,speed of process)
P.—P

n+1 n:r 1—P
p (1-F)

Solving thisequation for P,
P.=P+rP (1-P)

n+1
* This is called the LOGISTIC MODEL — needs to be iterated (nonlinear expressicig)

yields the population model

+1?



Logistic Feedback lterator —
Verhulst Model (1845)

I:)n+1 = I:)n +r Pn (1_ Pn)
lteration:
Take P0=0.01 (initial population is 1% of the maximum population)
r=3
P=P+rP, (1-P,) P, = 0.01
) P, = 0.0397
PR=R+rR(1-F) P, =0.15407173
P.=0.545072626044...
P3:P2+r32(1_P2) ]

Observe: Continued iteration requires higher and higher computational accuracy if
we insist on exact results. Although this seems to be trivial, it leads to serious
problems.

15



Predictability — iteration formula

X =X +rX (1-X.) .

This still looks simple

I

Let us take r=3, n=100, and X,=0.01

n+1

. 0.039700000000000
0.154071730000000
0.545072626044421
1.288978001188801
0.171519142109176
0.597820120107099
1.319113792413797
0.056271577646257
0.215586839232630
10.0.722914301179573
20. 0.596529312494691
50. 1.313996746606757
100. 0.3937885956368¥8
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Predictability — iteration formula
X =X +rX (1-X,)

This still looks simple

Let us take r=3, n=100, and X,=0.01 ———

What if we stop at the 10t iteration and truncate
the result to only 3 decimal places

0.722914301179573 => 0.722

Compare the
“old” and the
“new” iterations:

20. 1.309731022679916
50. 1.084204314601272
100. 1.230459200984260

NEW

Xn+1
1. 0.039700000000000

0.154071730000000
0.545072626044421
1.288978001188801
0.171519142109176
0.597820120107099
1.319113792413797
0.056271577646257
0.215586839232630

10.0.722914301179573
20. 0.596529312494691

50. 1.313996746606757
100. 0.393788595636378
OLD 17
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Predictability — iteration formula

X =X +rX (1-X )

What if we stop at 10t iteration and truncate the
results to only 3 decimal places

0.722914301179573 => 0.722

Compare the “old” and the “new” iterations:

Striking result: Even at 20%
iteration — the results are
not correlated any more

20. 1.309731022679916
50. 1.084204314601272
100. 1.230459200984260

NEW

1.

2
3
4
.
6
7
8
9

Xn+1
0.039700000000000

0.154071730000000
0.545072626044421
1.288978001188801
0.171519142109176
0.597820120107099
1.319113792413797
0.056271577646257
0.215586839232630

10.0.722914301179573
20. 0.596529312494691

50. 1.313996746606757
100. 0.393788595636378

OLD 18



Predictability — iteration formula

1.4

Compare the

¥ni=xn+r*xn*(1-xn)/original(r), truncated10(g)
T T T T T

and the “new’ iterations:

Striking result: After 20" iteration — the results are
not correlated
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Predictability — iteration formula

Compare the “old” and the “new” iterations:

Striking result: After 1000t iteration — the results
are not correlated at all

Percent differance (%)

L
200 300 400

Iteration

Time series:

Time series:
% difference between original and

Original (red), truncated (green) expressions truncated expressions 20



Predictability — iteration formula

What if we just re-write the same expression differently?
X =X +rX (1-X )=

=X +rX —rX?°=

=(L+r)X_—-rX ?

Noticethat

X =X +rX (1-X ) &

X . =(@+r) X —-rX?

are algebraically completely identical,

but computers think differently!!!

21



lteration  Xna=X,+r X, (1-X,)

X ., =0+r)X —rX? Difference

1 0.010000000000000 0.010000000000000 0.000000000000000
10 0.215586839232630 0.215586839232638 -0.000000000000007
20 0.171084846701943 0.171084846695175 0.000000000006768
30 1.232112462387190 1.232112456898180 0.000000005489003
40 0.002909156902851 0.002908166812190 0.000000990090661
50 0.586382615268778 0.575607525195148 0.010775090073631
60 0.972495402397394 0.988950671746734 -0.016455269349340
70 0.986032164226998 0.588027498266818 0.398004665960180
80 1.245281926676870 0.746693837160232 0.498588089516638
90 0.821069312375225 1.177948649654320 -0.356879337279099
100 0.107040381336610 1.294133025295300 -1.187092643958690

22




Same formula rewritten
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After 10 iterations

Scatter plots: Same formula rewritten in two equivalent
ways
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Same formula rewritten
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Same formula rewritten
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Cob web diagram — graphical presentation of the iterative formula

| r=4; X,=0.01
Xn+1
§|50
T/ ' Max iter=100
Max iter=10 § o
Max iter=1000




Measure of Chaos — Ljapunov Exponent
* Assume a small arbitrary initial error E,

_n

Total amplification factor :

0]

En _ En En—l E
Eo En—l En—2 ..... Eo
Fromtheerror growth of thelinear system X ., =c X,
Theerror growthis ; | _¢ % =c" i.e,
0 0
1. |E
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Measure of Chaos — Ljapunov Exponent

« Approximate a small arbitrary error € as the previous error and:

Ev.i=T(X +6)—-T(X)
where f (x) =r x(l— x)

Inc_—ZIn

N4

ZI
o k=1
Forn — oo weobtain the Ljapunovexponent A

A=lim= Zm\f (%es)

N—oo n

f(X_+e)—T(X_)
: ‘ Zm\f (%es)

&

For A>0 => system is chaotic

For A<O or A=0 => system is stable
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Improving weather and climate
forecasts — ensemble forecasting

Epstein (1969) — Since the skill of the single deterministic forecast
decreases in time, stochastic (probabilistic) forecasts should be
considered. The only feasible way is “ensemble forecasting” —
several (many) model forecasts are performed by introducing
perturbations in initial conditions (IC) and model’s physics.

|IC perturbations: determining fastest growing errors of the
forecasts

NCEP - “Breeding growing perturbations” — start with initial
perturbations and after 1.5 days use differences between the
model and forecasts to scale perturbations for a new run.

ECMWEF — “Singular vectors” — use linear tangent model to obtain
fastest-growth errors.

Canadian Center — using an ensemble of data assimilation
systems (considering observational errors and adding random
numbers to the observations) and including different parameters
in the physical parameterizations of the model in different
ensembles to create IC.

Additional way — “Super-ensemble” — joint probabilistic forecast,,
from two or more models (single forecasts or ensembles).



Chaos — Example: Regional/mesoscale models MM5 and WRF
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50 MM5 ensembles + 50 WRF ensembles =
100 ensemble members

MM5 — Mesoscale Model
5 (Grell et al. 1994;
NCAR).

WRF — Weather and
Research Forecasting

model (Skamarock et al.
2005)

Simultaneous runs of
MM5 and WREF for 15
days (12 — 27 Dec 2008)

Initial/Boundary
conditions: GFS (0.5 x
0.5 deg grid resolution for
0-168 hours, 2.5 x 2.5
deg for > 168 h — 360
hours)

Domain setup: 2-
domains (I: 108 km grid;
103 x 93 grid points; Il:
36 km grid; 103 x 103
grid points) 30
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700 hPa Temperature (deg C)
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Super-ensemble — MM5 & WRF

700 hPa temperature at Oakland, Califomia (72493; —122.235278 |on, 37.719444 |at)

I
@® Sounding (KOAK; Oakland, Califomia)
MMS5 (51-ensembles)
= MM5 ensemble mean
WRF (51-ensembles)
= WRF ensemble mean
=== Super-ensemble mean (102 ensemble members)

Day of simulation

15
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50 ensemble trajectories for MM5 (red) and 50 ensemble trajectories for WRF (blue)



WRF — Global Ljapunov Exponent (LJE) — Mean LJE for each of 50 trajectories

Mean global Ljapunov exponent of WRF 925 hPa temperature at the Oakland station
by trajectory number (compared with trajectory 1)
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LJE < 0 -> Stable behavior
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WRF — Global Ljapunov Exponent (LJE)

LJE for each of 50 trajectories
at 12-hr intervals

Forecast 0-5 days

Forecast 10-15 days

LJE < 0 -> Stable behavior
LJE > 0 -> Chaotic behavior

Mean global Ljapunov exponent

Mean global Ljapunov exponent of WRF 925 hPa temperature at the Oakland station
for days 0-5, by trajectory number (compared with trajectory 1)
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WRF — Local Ljapunov Exponent (LJE) — LJE in successive steps
for each of 50 trajectories at 12-hr intervals
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at the Oakland station (comparison with sim 1)

250 T T T
N=1392
N (pos)=717
200 - N (neg)=617 m

150

Frequency

100

50

Ljapunov exponent

LJE < 0 -> Stable behavior
LJE > 0 -> Chaotic behavior



WRF — Local Ljapunov Exponent (LJE) — LJE in successive steps

for each of 50 trajectories at 12-hr intervals
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Chaos — What did we learn?

Chaos is present in many simple and complex models and
algorithms.

Chaos is the aperiodic, long-term behavior of a bounded,
deterministic system that exhibits sensitive dependence on
Initial conditions and algorithm parameters.

In essence, the computational error of a parameter grows
and readily exceeds the value of the iterated (predicted)
parameter. Consequently, chaos represents a break in the
predictability in dynamical systems.

The roots of chaos are intrinsically linked to general number
representation and the limitations of any computers in
precision and algebraic operations.

Positive Ljapunov exponent is one of the measures of
chaotic behavior.
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Summary characteristics of chaotic
systems

The governing equations of these systems
are nonlinear

The chaotic systems are aperiodic

They have sensitive dependence on initial
conditions

They have sensitive dependence on
boundary conditions

They are governed by one or more control
parameters, a small change in which can
cause the chaos to appear or disappear
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