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Predictability
• Predictability is ability to estimate the future 

state of a dynamical system knowing the y y g
involved physical processes and initial 
conditions of the system. In other words, the y ,
predictability of the system refers to the 
degree of accuracy with which it is possible g y p
to predict the future state of the system.

• Intuitively – The best example is theIntuitively The best example is the 
predictability of weather and climate
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Prediction
• The state of atmosphere is continuously 

evolving under a set of physical laws.
• Dynamical prediction

The process of predicting the future state of p p g
the atmosphere is based on temporal 
extrapolation of the present state using the 
physical laws.

• Statistical prediction
The extrapolation rules are determined 
empirically based on past states of the 
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system.



Causes of imperfect predictionsCauses of imperfect predictions

• Incomplete (imperfect) knowledge of the initial 
state of the system (atmosphere)
I l t (i f t) k l d f th b d• Incomplete (imperfect) knowledge of the boundary 
conditions (atmosphere)
Imperfect methods (models) by which the temporal• Imperfect methods (models) by which the temporal 
and spatial extrapolation was performed due to 
incomplete knowledge of the physical lawsincomplete knowledge of the physical laws.

• Imperfect numerical representations and 
computation techniques.
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computation techniques.



Great discovery – predictability limits
• Early studies: Poincare (1903) – “Although we know all physics laws exactly, we could know 

initial conditions (IC) only approximately. Small changes in the IC produce very great ones in 
the final phenomena. A small error in the former can produce an enormous error in the latter 
and prediction becomes impossible.”   
U til th l t 1950 i ti t th ht th t b tt t d b tt i t d t ld• Until the late 1950s scientists thought that better computers and better input data would 
always lead to better and better accuracy of weather forecasts.

• First challenge – Ed Lorenz (around 1956). He designed a model – a set of 12 equations 
representing certain atmospheric conditions and solved it numerically on an available 
computer.  After one of the completed runs, he repeated the same run, which was p p , p ,
interrupted for some reason in the middle.  He took the current outputs and inserted them as 
inputs to continue the interrupted run.

• After some time into the simulation, he noticed that the results of the new run started to 
differ and then completely diverge from the original run.

• At first he suspected a problem with the computer but the repeated original run produced• At first he suspected a problem with the computer, but the repeated original run produced 
the expected results.

• After some analysis and thinking, he discovered that the problem was in the precision of the 
interrupted output.  The print out had less significant digits than the precision of the 
computer.

• He noticed that the small difference between something retained to six decimal places and 
rounded off to three had amplified in the course of two months. Eventually, the differences 
became as big as the values itself.

• Lorenz concluded that we cannot make forecasts two months ahead even if we have a 
perfect model. Small errors (or even uncertainties) would amplify until they became too
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perfect model.  Small errors (or even uncertainties) would amplify until they became too 
large.  For example, if an initial temperature entered in the computer is 12.235C instead of 
12.23528C, that would imply the growth of differences between the two runs that would 
eventually lead to a completely different forecast at the end of the simulation.



Lorenz discovery – predictability limits
• Lorenz’ discovery led to rapid development of 

theories of how deterministic systems such as 
weather forecasts can lead to predictability break upweather forecasts can lead to predictability break up 
and chaotic behavior.

• Current studies show that increased complexity ofCurrent studies show that increased complexity of 
the physical system actually can reduce the level of 
chaotic behavior.

• CHAOS: Aperiodic, long-term behavior of a 
bounded, deterministic system that exhibits 
sensitive dependence on initial conditions andsensitive dependence on initial conditions and 
control parameters.

• *** Chaos (greek):  Origin of the Universe (Great 
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(g ) g (
Emptiness); also: State of a system without order.



dX sY sX
dt
dY

= − Predictability problem –Lorenz’ famous
system of thermal convection in thedY XZ rX Y

dt
dZ XY bZ
dt

= − + −

= −

system of thermal convection in the 
atmosphere (in 1960s)

810; 28;
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s r b= = =

X – size of the convective motion

Y – proportional to the temperature difference between 
ascending and descending fluids

Z – proportional to the deviation of the vertical temperatureZ proportional to the deviation of the vertical temperature 
profile from a linear function.

s – Prandtl number

Ra – Rayleigh number; Rc – critical Rayleigh number

t t i th iti l R l i h b4
R
Rr

c

a=

a – constant in the critical Rayleigh number
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Lorenz’ Model

X
Output 
results 
(blue)

Where 
model 
stopped STOPPED 

HERE !X=0.432
Y=9.122
Z=0.011

L
time

HERE !

Lorenz 
used 
these 
results to
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results to 
continue 
the run



Lorenz’ Model

Last output used X
as input data to 
continue the 
model run (blue)

X=0.432
Y=9.122
Z=0.011

FINISHED !

time
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Lorenz’ ModelLorenz  Model
New run from 
the beginning
(red)
(N d ff)

X
(No round off)

At the stop 
point:

X=0.431922
Y=9.122325
Z=0.010908

Stop point
“Broken” run -
Input Data 
(blue)

time

Stop point

(blue)

At the stop 
point:

X 0 432
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X=0.432
Y=9.122
Z=0.011



Characteristics of predictabilityCharacteristics of predictability

• Weather and climate models are complexWeather and climate models are complex 
systems with known problems in accurate 
predictability However even extremelypredictability. However, even extremely 
simple systems can show the lack of 
predictabilitypredictability.

• Let us take an example of a system that 
should be easy to understandshould be easy to understand.
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Predictability – simple linear iteration 
formulaformula

Bank – simple interest formula

1n nX r X+ =
X 1 N lXn+1 – New value

R – Interest ratio

Xn – Initial value

1( ) ( ) nX X X X X+

After successive multiplications

1
1 1 2 0( ) ( ) ...... n

n n n nX r X r r X r r r X r X+
+ − −= = = = =

So, if we know the initial value and the interest rate, we can easily calculate the 
l
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new value

The new value can be uniquely calculated for any combination of r, n, and X0



Simple nonlinear system – Logistic feedback iteratorp y g

• Assume a species of cell living in a contained environment p g
(e.g., fish tank) with constant food supply and temperature.  
There will be a maximum population of size N that can be 
supported by the environmentsupported by the environment

• Pn is the actual population at time n
• If Pn is smaller than N, we expect population to growIf Pn is smaller than N, we expect population to grow
• If Pn is greater than N, we expect population to decrease
• A growth rate r can be defined as

1n nP Pr
P

+ −
=
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Logistic Feedback Iterator –
Verhulst Model (1845)( )

• Verhulst assumed that the growth rate at time n should be proportional to 1-
Pn (the fraction of the environment that is not yet used by the population at 
time n):

1 1n n
n

P P P
P

+ −
∝ −

Introducea suitableconstant (e.g.,speed of process)
nP

r
P P1 (1 )n n

n
n

P P r P
P

+ −
= −

1

1

Solving this equation for ,yields the population model
(1 )

n

n n n n

P
P P r P P

+

+ = + −
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• This is called the LOGISTIC MODEL – needs to be iterated (nonlinear expression)



Logistic Feedback Iterator –
V h l t M d l (1845)Verhulst Model (1845)

• Iteration:
1 (1 )n n n nP P r P P+ = + −

Take P0=0.01 (initial population is 1% of the maximum population)
r=3 

1 0 0 0(1 )P P r P P= + −

2 1 1 1(1 )P P r P P= + −

P0 = 0.01
P1 = 0.0397
P2 = 0 154071732 1 1 1

3 2 2 2

( )
(1 )P P r P P= + −

P2  0.15407173
P3 = 0.545072626044…
………. 

.......
Observe: Continued iteration requires higher and higher computational accuracy if 
we insist on exact results.  Although this seems to be trivial, it leads to serious 
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problems.



Predictability – iteration formula
1 (1 )n n n nX X r X X+ = + −

Thi till l k i l

1.   0.039700000000000

2. 0.154071730000000

Xn+1

This still looks simple 2.   0.154071730000000

3.   0.545072626044421

4.   1.288978001188801

5.   0.171519142109176

6.   0.597820120107099

7 1 319113792413797

Let us take r=3, n=100, and X0=0.01

7.   1.319113792413797

8.   0.056271577646257

9.   0.215586839232630

10.0.722914301179573

20. 0.596529312494691
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50. 1.313996746606757 

100. 0.393788595636378



Predictability – iteration formula
X 1

1 (1 )n n n nX X r X X+ = + −
Thi till l k i l

1.   0.039700000000000

2.   0.154071730000000

Xn+1

This still looks simple

L t t k 3 100 d X 0 01

3.   0.545072626044421

4.   1.288978001188801

5 0 171519142109176Let us take r=3, n=100, and X0=0.01 5.   0.171519142109176

6.   0.597820120107099

7.   1.319113792413797

8.   0.056271577646257

9.   0.215586839232630

10 0 722914301179573

What if we stop at the 10th iteration and truncate 
the result to only 3 decimal places

0.722914301179573 => 0.722 10.0.722914301179573
20. 0.596529312494691

50. 1.313996746606757 

20. 1.309731022679916

50. 1.084204314601272 

0.722914301179573   0.722

Compare the
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100. 0.393788595636378100. 1.230459200984260

Compare the 
“old” and the 
“new” iterations: NEW OLD



Predictability – iteration formula
Xn+1

1 (1 )n n n nX X r X X+ = + − 1.   0.039700000000000

2.   0.154071730000000

3 0 545072626044421

n+1

What if we stop at 10th iteration and truncate the 3.   0.545072626044421

4.   1.288978001188801

5.   0.171519142109176

p
results to only 3 decimal places

0.722914301179573 =>  0.722

6.   0.597820120107099

7.   1.319113792413797

Compare the “old” and the “new” iterations:

Striking result: Even at 20th
8.   0.056271577646257

9.   0.215586839232630

10 0 722914301179573

Striking result:  Even at 20th

iteration – the results are 
not correlated any more 10.0.722914301179573

20. 0.596529312494691

50. 1.313996746606757 
20. 1.309731022679916

50. 1.084204314601272 

not correlated any more
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100. 0.393788595636378100. 1.230459200984260

NEW OLD



Predictability – iteration formula
C th “ ld” d th “ ” it tiCompare the “old” and the “new” iterations:

Striking result:  After 20th iteration – the results are 
not correlatednot correlated

Time series:
Time series:
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Time series:

Original (red), truncated (green) expressions
% difference between original and 
truncated expressions



Predictability – iteration formula
C th “ ld” d th “ ” it tiCompare the “old” and the “new” iterations:

Striking result:  After 1000th iteration – the results 
are not correlated at allare not correlated at all

Time series:
Time series:

20
% difference between original and 
truncated expressions

Time series:

Original (red), truncated (green) expressions



Predictability – iteration formula
What if we just re-write the same expression differently?

1 (1 )n n n nX X r X X+ = + − =
2

2(1 )

n n n n

n n nX r X r X

X X

= + − =
2(1 ) n nr X r X

Noticethat
= + −

1
2

(1 ) &

(1 )
n n n nX X r X X

X r X r X
+ = + −

+1 (1 )
arealgebraicallycompletely identical,

n n nX r X r X+ = + −
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but computers think differently!!!



DifferenceIteration 1 (1 )n n n nX X r X X+ = + − 2
1 (1 )n n nX r X r X+ = + −

1 0.010000000000000 0.010000000000000 0.000000000000000

10 0.215586839232630 0.215586839232638 -0.000000000000007

1 ( )n n n+

10 0.215586839232630 0.215586839232638 0.000000000000007

20 0.171084846701943 0.171084846695175 0.000000000006768

30 1.232112462387190 1.232112456898180 0.000000005489003

40 0.002909156902851 0.002908166812190 0.000000990090661

50 0.586382615268778 0.575607525195148 0.010775090073631

60 0.972495402397394 0.988950671746734 -0.016455269349340

70 0.986032164226998 0.588027498266818 0.398004665960180

80 1.245281926676870 0.746693837160232 0.498588089516638

90 0.821069312375225 1.177948649654320 -0.356879337279099
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100 0.107040381336610 1.294133025295300 -1.187092643958690



Scatter plots: Same formula rewritten in two equivalent 
ways

After 10 iterations
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Scatter plots: Same formula rewritten in two equivalent 
ways

After 100 iterations

After 10 iterations

After 100 iterations

CHAOS !!!
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Scatter plots: Same formula rewritten in two equivalent 
ways

After 100 iterations

After 10 iterations

After 100 iterations

After 1000 iterations

CHAOS !!!
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r = 4; X0 = 0.01

Cob web diagram – graphical presentation of the iterative formula

r  4;  X0  0.01

Xn+1

Max iter=100

Max iter=10

Max iter=1000

Xn

Max iter=1000
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Measure of Chaos – Ljapunov Exponent
• Assume a small arbitrary initial error E0

nET l lifi i f

1 1

: n

o

n n n

Total amplification factor
E

E E E E−1 1

1 2

1

.....n n n

o n n o

n n

E E E E
Fromtheerror growth of thelinear system X c X

− −

+

=

=

0

0

: . .,
n

nn

o

E c XTheerror growthis c i e
E X

= =

1ln ln ln lnn n

o o

E En c c
E n E

= => =
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−

− −

= =
1 1

n
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Measure of Chaos – Ljapunov Exponent
• Approximate a small arbitrary error ε as the previous error and:

1 ( ) ( )k k kE f x f xε+ = + −

'1 1
1

where ( ) (1 )
( ) ( )1 1 1ln ln ln ln ( )

n n n
k k k

k

f x r x x
E f x f xc f x

n n n
ε

ε ε
− −

−

= −

+ −
= = =∑ ∑ ∑

1 1 1

'

For weobtain the Ljapunov exponent
1

k k k

n

n n n
n

ε ε
λ

= = =

→∞

∑ ∑ ∑

∑ '
1

1

1lim ln ( )kn k
f x

n
λ −→∞

=

= ∑

For λ>0 => system is chaoticFor λ>0  => system is chaotic

For λ<0 or λ=0 => system is stable
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Improving weather and climate 
forecasts – ensemble forecastingforecasts ensemble forecasting

• Epstein (1969) – Since the skill of the single deterministic forecast 
decreases in time, stochastic (probabilistic) forecasts should be 
considered The only feasible way is “ensemble forecasting” –considered. The only feasible way is ensemble forecasting  
several (many) model forecasts are performed by introducing 
perturbations in initial conditions (IC) and model’s physics.

• IC perturbations: determining fastest growing errors of the 
forecasts

• NCEP – “Breeding growing perturbations” – start with initial 
perturbations and after 1.5 days use differences between the 
model and forecasts to scale perturbations for a new runmodel and forecasts to scale perturbations for a new run.

• ECMWF – “Singular vectors” – use linear tangent model to obtain 
fastest-growth errors.

• Canadian Center – using an ensemble of data assimilationCanadian Center using an ensemble of data assimilation 
systems (considering observational errors and adding random 
numbers to the observations) and including different parameters 
in the physical parameterizations of the model in different 

bl t t IC
29

ensembles to create IC.
• Additional way – “Super-ensemble” – joint probabilistic forecast 

from two or more models (single forecasts or ensembles).



• MM5 – Mesoscale Model 
5 (Grell et al 1994;

Chaos – Example: Regional/mesoscale models MM5 and WRF

5 (Grell et al. 1994; 
NCAR).

• WRF – Weather and 
Research Forecasting g
model (Skamarock et al. 
2005)

• Simultaneous runs of 
MM5 and WRF for 15 
days (12 – 27 Dec 2008)

• Initial/Boundary 
conditions: GFS (0 5 xconditions:  GFS (0.5 x 
0.5 deg grid resolution for 
0-168 hours, 2.5 x 2.5 
deg for > 168 h – 360 
hours)

• Domain setup:  2-
domains (I: 108 km grid; 
103 x 93 grid points; II:
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103 x 93 grid points; II: 
36 km grid; 103 x 103 
grid points)50 MM5 ensembles + 50 WRF ensembles =

100 ensemble members



…… ……

MM5 50 bl WRF 50 bl
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MM5 – 50 ensemble runs WRF – 50 ensemble runs
Physics parameterization options (PBL, cloud mic., Cu, Rad)



Super-ensemble – MM5 & WRF
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50 ensemble trajectories for MM5 (red) and 50 ensemble trajectories for WRF (blue)



WRF – Global Ljapunov Exponent (LJE) – Mean LJE for each of 50 trajectories
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LJE < 0 -> Stable behavior
LJE > 0 -> Chaotic behavior



WRF – Global Ljapunov Exponent (LJE)
LJE for each of 50 trajectories 
at 12-hr intervalsat 12-hr intervals

Forecast 0-5 daysy

Forecast 10-15 days
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LJE < 0 -> Stable behavior
LJE > 0 -> Chaotic behavior



WRF – Local Ljapunov Exponent (LJE) – LJE in successive steps
for each of 50 trajectories at 12-hr intervals

35
LJE < 0 -> Stable behavior
LJE > 0 -> Chaotic behavior



WRF – Local Ljapunov Exponent (LJE) – LJE in successive steps
for each of 50 trajectories at 12-hr intervals

Forecast 0-5 days

Forecast 10-15 days
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LJE < 0 -> Stable behavior
LJE > 0 -> Chaotic behavior



Chaos – What did we learn?
• Chaos is present in many simple and complex models and 

algorithms.
• Chaos is the aperiodic, long-term behavior of a bounded, 

deterministic system that exhibits sensitive dependence on 
initial conditions and algorithm parameters.g p

• In essence, the computational error of a parameter grows 
and readily exceeds the value of the iterated (predicted) 
parameter Consequently chaos represents a break in theparameter.  Consequently, chaos represents a break in the 
predictability in dynamical systems.

• The roots of chaos are intrinsically linked to general number 
representation and the limitations of any computers inrepresentation and the limitations of any computers in 
precision and algebraic operations.

• Positive Ljapunov exponent is one of the measures of 
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chaotic behavior.



Summary characteristics of chaotic 
systemssystems

• The governing equations of these systems 
are nonlinearare nonlinear

• The chaotic systems are aperiodic
• They have sensitive dependence on initial• They have sensitive dependence on initial 

conditions
• They have sensitive dependence on• They have sensitive dependence on 

boundary conditions
• They are governed by one or more control• They are governed by one or more control 

parameters, a small change in which can 
cause the chaos to appear or disappear
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cause the chaos to appear or disappear


