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a AMGI Department of Geophysics, Faculty of Science, University of Zagreb, Croatia
b MHSC Weather Service, Zagreb, Croatia

ABSTRACT: In this short note we discuss a long-standing problem in modelling the atmospheric boundary layer (ABL)
over complex terrain: namely, an excessive use of the Monin–Obukhov length scale LMO. This issue becomes increasingly
relevant with the ever-increasing resolution of numerical weather-prediction and climate models, which typically use LMO

in one way or another for parametrizing the surface layer, or at least for formulating the lower boundary conditions. Hence,
inevitably, the models under-represent a significant part of the mesoscale flow variability.

We focus here on the stable ABL over land: in particular, sloped cooled flows. However, a qualitatively similar reasoning
applies to the corresponding unstable ABL. We show that for sufficiently stratified flows over moderately sloped surfaces,
Monin–Obukhov scaling is inadequate for describing the basic ABL dynamics, which is often governed by katabatic and
drainage flows. Copyright  2007 Royal Meteorological Society
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1. Introduction

In complex boundary-layer flows, where the interaction
of the air flow with inclined surfaces can be complex,
subtle, and dependent on many parameters, one needs
to refine the ordinary methods for flux estimations that
are used over nearly-horizontal surfaces. This relates, for
example, to atmospheric-boundary-layer (ABL) schemes
in numerical weather prediction (NWP), and climatolog-
ical and air-pollution models, all of which need near-
surface flux parameters. Monin–Obukhov theory has
been most often used for scaling near-surface fluxes
(e.g. Stull, 1988; Zilitinkevich et al., 2002), even though
it has been shown that this theory and its scaling is some-
times inadequate (Munro and Davies, 1978; Mahrt, 1998,
2007a, 2007b; van der Avoird and Duynkerke, 1999;
Munro, 2004). In this study we mostly neglect convec-
tive conditions and focus on a stable ABL. The use of
the Monin–Obukhov length scale LMO is often question-
able for katabatic flows (e.g. Grisogono and Oerlemans,
2001a, 2001b) and other stable ABL flows (e.g. Mahrt,
1998, 2007a; Zilitinkevich and Calanca, 2000; Jeričević
and Grisogono, 2006; Zilitinkevich and Esau, 2007).

Apparently there is a need for an extension of
Monin–Obukhov similarity theory to handle sloping ter-
rain (e.g. Mahrt, 1981, 1998; Grisogono and Oerlemans,
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2001b; Zilitinkevich et al., 2006; Baklanov and Griso-
gono, 2007). Although friction acts at the inclined sur-
face, turbulence production is not governed by the surface
but by the low-level jet. We tackle this issue by compar-
ing LMO with the height of the low-level katabatic jet, zj.
When LMO > zj, then LMO ought to be used with cau-
tion, because it does not capture a short-enough scale
to be relevant for the effects of turbulent eddies on the
fluxes.

Important related questions include the existence of a
critical Richardson number, Ri , in the ABL and the possi-
ble increase of the eddy Prandtl number, Pr , with increas-
ing Ri (Kondo et al., 1978; Mahrt, 1998, 2007b; Monti
et al., 2002; Zilitinkevich and Esau, 2007). The critical
Ri , employed in linear theory for infinitesimal pertur-
bations, seems to be precluded in the ABL, where pre-
existing finite-amplitude disturbances are almost always
present. These disturbances include various buoyancy
waves, two-dimensional modes (meandering or pan-
cake motions), and other more complicated imprints of
unknown dynamics. Our simple approach uses the Prandtl
model (Prandtl, 1942; Defant, 1949) for estimating zj.
This model has been extended for the vertically-varying
eddy diffusivity and Coriolis effects (Grisogono and Oer-
lemans, 2001a, 2001b; Stiperski et al., 2007; Kavčič and
Grisogono, 2007); moreover, Stiperski et al. (2007) also
show that the Prandtl model may work even for finite-
amplitude disturbances (as long as the one-dimensionality
assumption holds). This will give some confidence to our
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reasoning about an asymptotic relation between Pr and
Ri .

2. The length-scale comparison

Here we briefly recall the definitions for LMO (e.g. Stull,
1988) and the classical zj (e.g. Egger, 1990; Grisogono
and Oerlemans, 2001b). The former is defined as:

LMO = − θ

gk
· u3

∗
w′θ ′ , (1)

implying that the turbulent flow is horizontally homo-
geneous (e.g. Mahrt, 1981, 1998; Stull, 1998), and thus
that there is no dynamically-relevant slope significantly
affecting the flow. Here, u∗ is the friction velocity, w′θ ′
is the near-surface heat flux (already divided by the den-
sity and the specific heat at constant pressure), g is the
acceleration due to gravity, θ is a relevant potential tem-
perature, and k is the von Karman constant.

In stark contrast to Equation (1), for an ABL that
is slightly tilted–say by 5° or so, which is hardly
visible to the eye–the wind receives a direct contribution
from buoyancy forces. Probably the simplest meaningful
model for the latter flow regime is that of Prandtl
(1942) (e.g. Defant, 1949; Egger, 1990). Of course, this
generally applies to both statically unstable (i.e. anabatic)
and stable (i.e. katabatic) ABL flows. We focus here on
sloped cooled (katabatic) flows. It is straightforward to
show that:

zj = π

4

(
4K2Pr

N2 sin2 α

) 1
4

(2)

(e.g. Egger, 1990; Grisogono and Oerlemans, 2001b).
Here K is the eddy heat conductivity (giving eddy
diffusivity for momentum if multiplied by Pr), N is the
buoyancy frequency, and α is the constant slope angle.

Using K-theory to express the near-surface momentum
and heat fluxes,

u2
∗ = KPr

∂U

∂z

and

−w′θ ′ = K
∂�

∂z
,

and using the definition for (gradient) Ri,

Ri = N2(
∂U
∂z

)2 ,

where U is the mean wind speed, we find the squared
ratio:

Br =
(

LMO

zj

)2

= 8

(kπ)2 | sin α|
(

Pr5

Ri 3

) 1
2

. (3)

It is obvious from Equation (3) that as long as α is very
small (e.g. α < 5°) and Pr ≈ Ri ∼ 1, then LMO < zj,
i.e. Br < 1, and the classical Monin–Obukhov theory
may apply in the context considered here; furthermore,
one may proceed as before in modelling the stable ABL.
However, Equation (3) also shows that for moderate and
steeper slopes (say α � 5°), sufficiently stratified flows
with Pr > 1 are inevitably susceptible to more momen-
tum than heat mixing, and then zj < LMO, i.e. Br > 1. In
such flows, LMO is too large to represent the near-surface
fluxes dictated now by the low-level katabatic jet. There-
fore, LMO becomes the less relevant scale for turbulent
processes in the stable ABL (e.g. Mahrt, 1998; van der
Avoird and Duynkerke, 1999; Grisogono and Oerlemans,
2001b). As an instructive example, Figure 1 summarizes
our findings; the particular choice of the values plotted
does not change our main result or proof of concept. For
instance, if an NWP model with a horizontal resolution
of 8 km resolves terrain with a mountain height of 1 km,
the corresponding slope is over 5°, and thus is prone to
more or less persistent sloped flows (e.g. Egger, 1990;
Parmhed et al., 2004). For these flows, Br > 1, and the
related near-surface flow does not satisfy the assumptions
related to LMO. Hence (e.g. Mahrt, 1998; Grisogono and
Oerlemans, 2001b, 2002), such a sloped strongly-stable
ABL, driven by cooling from below, does not possess the
classical surface layer described by LMO.

3. Discussion

In an observational case provided by Greuell et al.
(1997), and reconsidered in further detail by Grisogono
and Oerlemans (2001b), zj was about 5–7 m and LMO

about 18 m. The related near-surface flow was dominated
by the katabatic wind, which could not have been
described properly by Monin–Obukhov theory: when
zj is so low, there is simply no room for a classical
surface layer where the fluxes would be nearly constant.
Using Equation (3) and Figure 1, one can still attempt
to extend the Monin–Obukhov theory so as to include
shallow (simple) katabatic flows in NWP and climate
models, i.e. to avoid Br > 1. A first candidate for such
an extension or modification would be:

L−1
MOD = aL−1

MO + bz−1
j ,

where a and b are unknown coefficients that should be
found from observational data. Meanwhile, the values
of a and b for certain limiting cases could be assessed
analytically. The surface-layer similarity in such cases
should be modelled via this z/LMOD.

An alternative way of modelling turbulent fluxes in a
stable ABL, which we only sketch here in passing, could
be based on the WKB theory (Grisogono and Oerlemans,
2001a, 2001b, 2002; Parmhed et al., 2004; Kavčič and
Grisogono, 2007). It seems that LMO is only a good scale
for eddy diffusivity, as such, which should vary on a scale
larger than zj, while the fluxes should be determined by
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Figure 1. Log-log display of the squared ratio of Monin–Obukhov length vs. low-level katabatic jet height, Br = (LMO/zj)
2, for four different

values of terrain slopes (the lines). Whenever this ratio is larger than one, Br > 1, pertaining to the lower right part of the plot, LMO is not
the relevant scale for the near-surface turbulent fluxes. Higher the slope or/and stronger stratification, earlier the onset of Br > 1 and hence the

validity of the proposed scaling with zj. This figure is available in colour online at www.interscience.wiley.com/qj

zj, or alternatively by LMOD. For example, the height
of the maximum eddy diffusivity in the case mentioned
above was 20 m, which is very close to LMO = 18 m. On
the other side, there is also evidence that classical local
scaling may work even for sloped flows (e.g. Heinemann,
2004); according to our study, such flows exhibit Br < 1.

Suppose that flows under strong stability over a given
slope somehow reach a constant ratio in Equation (3)
asymptotically; then moderate changes in either Ri or
Pr no longer affect this ratio. Thus, given this con-
dition, the supposed constancy of Br implies the con-
stancy of the square-root factor in Equation (3). So

in that case Pr ∼ Ri
3
5 asymptotically; this is consis-

tent with ideas from other studies that Pr ∼ Ri q , with
0.2 � q � 0.8 (e.g. Kondo et al., 1978; Monti et al.,
2002; Mahrt, 2007b). This is in a broad agreement with
the findings of Richardson (1920), Mauritsen et al. (2007)
and Zilitinkevich and Esau (2007) that turbulence may
exist at any Ri , given sufficiently high Pr . The dimen-
sionless parameter Br in Equation (3) could be general-
ized to other types of low-level jets. In this way, one
might avoid a somewhat similar scaling of LMO with, for
example, the top of a very stable ABL, which is often
poorly and ambiguously defined.

5. Conclusions

We have compared the Monin–Obukhov length with the
height of the low-level katabatic jet estimated from the
Prandtl model for simple sloped flows. For a given slope,
we have shown when Monin–Obukhov scaling becomes
inadequate to describe the lower part of the ABL dynam-
ics, which is governed by katabatic wind. Specifically,
Equation (3) and Figure 1 indicate the region of the
(Pr, Ri ) subspace in which the classical LMO may not
describe turbulent processes related to low-level jets. In

short, in this note we propose another vertical scaling
for the lower part of a very stable ABL. It is plausible
that a similar reasoning can be deployed for other types
of low-level jets, or anabatic ABL flows. This informa-
tion is useful for NWP and climate modelling, as well
as for air-pollution and dispersion calculations based on
these models, because it enables a priori estimation of
where and when near-surface turbulent fluxes based on
LMO will be wrong. Furthermore, we have suggested a
first step to remedy this failure.
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