Tropics

Tropics

Why do we care?

- It affects the weather all around the globe
- More than a third of our planet

Political Map of the World, April 2006

General circulation – trade winds

Trade winds – what kind of weather do they bring to Hawaii?

©The COMET Program

General circulation – ITCZ

Intertropical convergence zone - ITCZ

ITCZ from the satellite image

Google tropical disturbances...

What else lives in the tropics?

- Intertropical convergence zone (ITCZ)
- Easterly waves, hurricanes
- El Nino/La Nina
- Walker circulation
- Madden-Julian oscillation
- Other equatorially trapped waves

El Niño–Southern Oscillation ENSO

- ENSO is an irregularly periodic variation in winds and SST (sea surface temperature) over the tropical eastern Pacific Ocean
- It affects climate of much of the tropics and subtropics and further
- The warming phase of the SST is <u>El Niño</u> (high surface pressure in the western Pacific)
- The cooling phase of the SST is <u>La Niña</u> (low surface pressure in the western Pacific)

Southern Oscillation refers to the atmospheric component: H during El Nino, L during La Nina in W Pacific, the other way in E Pacific

El Nino – La Nina

• https://www.youtube.com/watch?v=WPA-KpldDVc

El Nino

- Warming of the ocean surface or above-average SST in the central and eastern tropical Pacific Ocean.
- Warming causes a shift in the atmospheric circulation
- Rainfall is reduced over Indonesia and Australia
- Rainfall and tropical cyclone formation increases over the tropical Pacific Ocean
- The low-level surface trade winds, which normally blow from east to west along the equator, either weaken or start blowing from the other direction.

La Nina

- cooling of the ocean temperatures in the central and eastern tropical Pacific Ocean due to increased upwelling
- strong easterlies, i.e. trade winds
- above-average precipitation across the northern Midwest, the northern Rockies, Northern California, and the Pacific Northwest's southern and eastern regions
- precipitation in the southwestern and southeastern states, as well as Southern California, is below average
- development of many stronger-than-average hurricanes in the Atlantic and fewer in the Pacific

Walker circulation

- Atmospheric component of ENSO
- It is caused by the PGF (pressure gradient force) that is a result from a H system over the eastern Pacific Ocean, and a L over western Pacific
- Weakened or reversed Walker circulation results in *El Niño* (ocean surface warmer than average)
- Strong Walker circulation results in a *La Niña* (ocean temperatures cooler than average)

Occurrence of El Nino – La Nina

Bob Tisdale

Hurricanes

- https://www.youtube.com/watch?v=zP4rgvu4xDE
- <u>https://www.youtube.com/watch?v=SSx_gisp24w</u>
- https://www.youtube.com/watch?v=bafyc-hkArw

Tracking hurricanes

<u>https://www.nhc.noaa.gov/?atlc</u> - Atlantic

or

• <u>https://www.nhc.noaa.gov/?epac</u> – Pacific

(depression, storm, hurricane)

Tropical Depression	 Wind speed: less than 63 km/h Occurs when a group of thunderstorms come together in a clearly defined low-pressure area.
Tropical Storm	•Wind speed: 64-118km/h •A low-pressure area with rotating circulation of winds.
Category 1	 Wind speed: 119-153km/h No real damage to buildings or structures; damage to trees and caravans; some coastal flooding.
Category 2	 Wind speed: 154-177km/h Some roof damage and broken windows; damage to trees and caravans; flooding of low-lying areas due to storm surge.
Category 3	 Wind speed: 178-209km/h Some structural damage to buildings and sheds; caravans are destroyed; flooding occurs near the coast and areas less than 2m above sea level.
Category 4	 Wind speed: 210-249km/h Structural damage to roofs and buildings; flooding near the shoreline and major erosion of beaches; evacuation of people may be required.
Category 5	 Wind speed: 250+ km/h Roofs blown off many buildings and sheds blown over; flooding near the shoreline and areas less than 5m above sea level; mass destruction may be required.