

Gross moist stability

Raymond et al., 2009: The mechanics of Gross Moist Stability

Sanda Đivanović Faculty of Science Split, Croatia

SWAP 2

GMS

Gross moist stability

vertically integrated horizontal divegence of some intensive quantity conserved in moist adiabatic processes

measure of the strength of moist convection per unit of area

convective mass flux/A
vertically integrated divergence of potentional temperature flux
vertically integrated convergence of water vapor

•moist static energy

- •equivalent potentional temperature
- •specific moist entropy

Methods

$$\frac{\partial [s]}{\partial t} + \nabla \cdot [vs] = F_s - R$$

$$\frac{\partial [r]}{\partial t} + \nabla \cdot [vr] = E - P$$

$$\omega = 0|_{z=0}^{z_{trop}}; \frac{\partial \omega s}{\partial p} = 0$$

Raymond and Fuchs (2009)

Steady state +: $[\nabla \cdot (sv)] = [v \cdot \nabla s] + [s\nabla \cdot v]$

$$\nabla \cdot \boldsymbol{v} + \frac{\partial \omega}{\partial p} = 0 \quad \cdot / \int_{p_0}^{p_t} dp / \cdot s$$
$$\omega = 0 \Big|_{z=0}^{z_{trop}} ; \frac{\partial \omega s}{\partial p} = 0$$

$$\Gamma_{R} = -\frac{T_{R}[\boldsymbol{v} \cdot \nabla \boldsymbol{s}]}{L[\nabla \cdot (\boldsymbol{r}\boldsymbol{v})]} - \frac{T_{R}[\boldsymbol{\omega} \cdot \frac{\partial \boldsymbol{s}}{\partial \boldsymbol{p}}]}{L[\nabla \cdot (\boldsymbol{r}\boldsymbol{v})]}$$

Theory

- MOIST ENTROPY conserved in a slow, moist and adiabatic processes
- MOIST STATIC ENERGY not conserved, depends on hydrostatic approximation
- NGMS over region
 - averging in space

$$\left[\overline{\nabla \cdot (sv)}\right] = \frac{1}{A} \left[\int_{\partial A} \nabla \cdot (sv) \cdot dA \right] = \frac{1}{A} \left[\oint_{\partial A} sv \cdot ndl \right]$$

$$\overline{\Gamma_R} = -\frac{[T_R \oint_{\partial A} sv \cdot ndl]}{[L \oint_{\partial A} rv \cdot ndl]}$$

$$s = \tilde{s} + s^{*}$$

$$\nabla \cdot v + \frac{\partial \omega}{\partial p} = 0 \quad \cdot/(\bar{}) \cdot s$$

$$\omega = 0|_{z=0}^{z_{trop}}; \quad \frac{\partial \omega s}{\partial p} = 0$$

$$\frac{\partial \omega}{\partial p} = -\frac{1}{A} \oint_{\partial A} v \cdot ndl$$

$$\overline{\Gamma_{R}} = -\frac{AT_{R}[\overline{\omega} \frac{\partial \tilde{s}}{\partial p}]}{[L \oint_{\partial A} rv \cdot ndl]} - \frac{[T_{R} \oint_{\partial A} s^{*}v \cdot ndl]}{[L \oint_{\partial A} rv \cdot ndl]}$$

$$6$$

- NGMS in models
 - large scale models-low pass filtering s=<s>+s', v=<v>+v'
 + Raynold decomposition <s'<v'>>=o etc.
 - averging over a relatively homogeneus region differences betwwen two models small
- Averging over time
 - alternative
 - total moist entropy:
 - term constructed of only timemean variable
 - term constructed from fluctuating parts of the velocity & entropy fields

GMS and environmental conditions

- I. Neelin & Held (1987)
 - 2-layer model
 - postulate:

low level convergence ∝ convection & precipitation

 $(MSEF)_{upper} - (MSEF)_{lower}$ $(MSE)_{upper} - (MSE)_{lower}$

- fixed sea temp. difference
 - relative humidity
- used to explain sensitivity to SST climatology ok,; day-to-day not
- 2. Raymond (2000) hypothesis
 - preciputation over wram tropical pool function solely of column relative humidity or saturation fraction (SF)

- Back & Bretheron (2005)
 - SF + surface wind speed surface heat & moisture fluxes
 - column stability CIN or CAPE
- BUT dominant contributor to precipitation rates are SF variations

4. Transient flows

• If precipitation rate & tropospheric humidity = $F(t) \rightarrow NGMS=f(t)$

5. Multiple equilibria

- Convective regions associated with smaller SF then stratiform regimes.
- Moist entropy import, NGMS<0</p>
- saturation deficit, key parameter

Convective regimes tend to be associated with smaller SF then stratiform & import entropy - NGMS<0

Results

- Global Forecasting System
- Period: March 10th May 22nd, 2010.
- Resolution: time 6h

- space 1°

$$\Gamma_{\rm H} = \frac{T_{\rm R}[\vec{\mathbf{v}}\cdot\nabla\mathbf{s}]}{-\left\{L[\vec{\mathbf{v}}\cdot\nabla\mathbf{r}_{\rm t}] + L[\omega\frac{\partial\mathbf{r}_{\rm t}}{\partial\mathbf{p}}]\right\}} \qquad \qquad \Gamma_{\rm V} = \frac{T_{\rm R}[\omega\frac{\partial\mathbf{s}}{\partial\mathbf{p}}]}{-\left\{L[\vec{\mathbf{v}}\cdot\nabla\mathbf{r}_{\rm t}] + L[\omega\frac{\partial\mathbf{r}_{\rm t}}{\partial\mathbf{p}}]\right\}}$$

| 14

x 10⁶

Thank you for your attention!