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applications or simple models

- generalized budget for systems with transients
- Stability analysis

- response to forcing anomalies
- sSimulating transients

- driving anomalies with data




generalized development

Generic equation for the development of a nonlinear system

introduce a state vector ® =( v, q, ...)

this becomes

iy
Z—tzquﬂcngf

where @ is the diagonal matrix that co



pasic State separation. 1

specify a basic state that is a solution of the equations

=>4+ Py dd P
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f=l+h dt dt
and

Ly + QDo + fo =0
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or to put it another way
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pasic state separation. 2

specify a realistic basic state (for example, the time mean flow)

d=0+P’ r=
dP dP
ul a® Ry i
F=F+F dt_O pr L®4+DTQP + f
but this time

ADVANTAGE: realistic

L®P+P QP+ f#0 ean advection basic state so meaningful
, , linearization possible
in fact we have transient eady rorcing DISADVANTAGE: linea
/ development equati

LB+3 QB +dTQP + F =0

and

AP’ / AVaY =1 / /
or to put it another way
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a perturbation moadel

So much for theory.
How do we solve these equations ? We use a dynamical model.
We can appeal to data to deduce the appropriate forcing functions:

data model
dP AV
E:chwTquf(t) E:L\Iqu\IITQ\IHLg

We now define g using data, so that if we initialize the model with 5 it will not develop.

SO — —

g=—L® — D' QP
We can easly find g by integrating the unforced model from 5 for just

From the time-mean budget equation we also see that this

g=J+2TQw

So this forcing represents t
These are the two pr



stability analysis

With our data-derived forcing, for small perturbations, integrating

dW
—o = LU 4 QU + g
/
Is equivalent to integrating ddit — Lmean\If/

We use the dynamical model to analyse the linear growth problem for normal modes of Lmea

Wnmam (CIZ, Y, Z) = Ané€n (337 Y, Z)

for a single mode

Ay, = 0 + 1w
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Simmons and Hoskins (1978)



The midlatitude Hall and Sardeshmukh (1998)
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response to forcing

We can use our dynamical model to find the response to a perturbation forcing f’

dv’

7 Lmean\Ij/ /
dt + 7

(and if we keep f’small the response is linear)

Start with another example from African easterly waves. This time we use a (convecti
anomaly as f’, to trigger a response. The response still looks like the normal
before. But it decays in time.



Initial value problems

- If normal mode solutions are neutral they can tell us about efficient structures.
- But we still lack a complete theory for the generation and intermittence of AEW events.

heat for one
day in an elipse
with a cosine
squared bell
shaped
distribution and
various vertical
profiles




Initial

- If normal nr
- But we still

850mb psi 90 minute period 000 (20 day loop)
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response to El Nino
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explicit transients: a simple GCM

Let’s reconsider the definition of our forcing function g.
Recall the development equations:

data model
dP dW
EZ:L@+¢U$D+ﬂﬂ E;:LW+WW@E+9

fweset g = f then this is the same as setting g = —L® — ETQE — O'TQP’

i.e. we have subtracted out the time-mean “forcing” due to the transients.

Again, we can calculate this forcing by initializing the unforced model from a series of v
¢ and then taking the time-average.

If the model is now initialized with 6 it will develop in time. In fact
explicit transient activity. And we hope that it will be realistic.
“simple GCM” will have a realistic climatology. The only thi

LT + T QU + 0/



It works !
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It works !

(c) v'T' High Pass 850 mb
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asymmetry of the mean response

(a) full heating

Perform long integrations with
equal and opposite heating (El
Nifio) and cooling (La Nina).

Look at the difference between
them and a control integration.

The asymmetry come
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time-independent solutions

It would be nice to get a time independent solution - i.e. a solution of

Lean¥' + f/ = 0 to compare with the equilibrated GCM reponse.
Not easy if Lmean is unstable (i.e. has positive values of o). If this is the case any integration of the
model will end up with a growing mode that dominates, and is unrelated to the forcing 7.

We can stabilize Lmean by subtracting a multiple of the identity matrix /. This does not affect the
modal structure of L. We can then find the time indepenent solution by integration of

v’
dt (Limean — AP + f

and then extrapolate back to A = 0 to get
our time independent linear solution.




application to a midlatitude SST anomaly

500 mb geopotential
height response to a
heating anomaly over
a midlatitude SSTA




application to a midlatitude SST anomaly

500 mb geopotential
height response to a
heating anomaly over
a midlatitude SSTA
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application to a midlatitude SST anomaly

500 mb geopotential
height response to a
heating anomaly over
a midlatitude SSTA
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application to a midlatitude SST anomaly

500 mb geopotential
height response to a
heating anomaly over
a midlatitude SSTA

li‘
y




nuage nuage

Another way of forcing a model is to push it towards a desired climatology in a restricted region,
and look at the effect on the solution outside that region. This is called nudging.

AL d, — U
—:L\IJ+\IJTQ\IJ+9+< )
dt T

Nudging involves an additional constant forcing term and a damping term.

In a linear experiment, the appropriate model is:

AA
T Lmean\lﬂ
7 + € (

T
This can be useful technique for diagnosing climate

anomalies or simulating other people’s GCMs with
a simple model.




effect of the tropics on the extratropics in. 2000

time independent
linear solutions

nuging the tropical
band in different
regions
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