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model development



applications of simple models

- generalized budget for systems with transients
- stability analysis
- response to forcing anomalies
- simulating transients
- driving anomalies with data



generalized development
Generic equation for the development of a nonlinear system

introduce a state vector 

this becomes

where          is the diagonal matrix that contains the elements of  

Φ =( v, q, ...)

ΦΦ†

∂q

∂t
= Lq −∇.vq + f

dΦ
dt

= LΦ +Φ †QΦ + f



basic state separation: 1
specify a basic state that is a solution of the equations

and

so

or to put it another way

Φ =Φ 0 + Φ1

f = f0 + f1

dΦ0

dt
= 0

dΦ1

dt
= LΦ1 + Φ†

1QΦ0 + Φ†
0QΦ1 + Φ†

1QΦ1 + f1

dΦ1

dt
= L0Φ1 + O(Φ2

1) + f1

ADVANTAGE: eddy development 
independent of separation
DISADVANTAGE: basic state 
unrealistic so nonlinear term large - 
linearization of questionable relevance

LΦ0 + Φ†
0QΦ0 + f0 = 0

dΦ
dt

= LΦ +Φ †QΦ + f



basic state separation: 2
specify a realistic basic state (for example, the time mean flow)

but this time

in fact we have

and

or to put it another way

Φ = Φ +Φ ′

f = f + f ′
dΦ
dt

= 0

LΦ + Φ†
QΦ + f != 0

ADVANTAGE: realistic 
basic state so meaningful 
linearization possible
DISADVANTAGE: linear 
development equation not 
independent of time mean 
transient “forcing”

mean advection

transient eddy forcing

dΦ′

dt
= LmeanΦ′ +

[
O(Φ′2)−O(Φ′2)

]
+ f ′

dΦ′

dt
= LΦ′ + Φ′†QΦ + Φ†

QΦ′ +
[
Φ′†QΦ′ − Φ′†QΦ′

]
+ f ′

LΦ + Φ†
QΦ + Φ′†QΦ′ + f = 0

dΦ
dt

= LΦ +Φ †QΦ + f



a perturbation model
So much for theory. 
How do we solve these equations ? We use a dynamical model. 
We can appeal to data to deduce the appropriate forcing functions: 

data         model

We now define g using data, so that if we initialize the model with       it will not develop.

so

We can easly find g by integrating the unforced model from       for just one timestep.

From the time-mean budget equation we also see that this definition of g gives

So this forcing represents the time mean diabatic forcing plus the mean “transient eddy forcing”. 
These are the two processes that maintain the time-mean circulation.

dΨ
dt

= LΨ +Ψ †QΨ + g
dΦ
dt

= LΦ +Φ †QΦ + f(t)

Φ

g = −LΦ− Φ†
QΦ

Φ

g = f + Φ′†QΦ′



stability analysis
With our data-derived forcing, for small perturbations, integrating

is equivalent to integrating

We use the dynamical model to analyse the linear growth problem for normal modes of Lmean

for a single mode

in general en is complex so the solution takes the form

Lmeanen(x, y, z) = λnen(x, y, z)

λn = σ + iω

dΨ
dt

= LΨ +Ψ †QΨ + g

dΨ′

dt
= LmeanΨ′

Ψn = en(x, y, z)e(σ+iω)t

Ψ′ = [A(x, y, z) sinωt + B(x, y, z) cos ωt] eσt



is the time-mean circulation unstable ?

Farrell (1982)
Whitaker and Sardeshmukh (1998)

σ < 0 σ ≈ 0 σ > 0
Stone (1978)
Hall and Sardeshmukh (1998)

Charney (1947)
Eady (1949)
Simmons and Hoskins (1978)



The midlatitude 
storm tracks

effect of low-level 
damping on modal 
growth

Hall and Sardeshmukh (1998)



African easterly waves

 Observations

  Model



response to forcing
We can use our dynamical model to find the response to a perturbation forcing f’

(and if we keep f’ small the response is linear)

Start with another example from African easterly waves. This time we use a (convective) heating 
anomaly as f’, to trigger a response. The response still looks like the normal mode that we found 
before. But it decays in time. 

dΨ′

dt
= LmeanΨ′ + f ′



Initial value problems
- If normal mode solutions are neutral they can tell us about efficient structures.
- But we still lack a complete theory for the generation and intermittence of AEW events.

heat for one 
day in an elipse 

with a cosine 
squared bell 

shaped 
distribution and 
various vertical 

profiles
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response to El Niño

The remote response to a 
steady tropical forcing 
involves radiation of Rossby 
and Kelvin waves (see Lisa’s 
talk)



explicit transients: a simple GCM
Let’s reconsider the definition of our forcing function g.
Recall the development equations:

data         model

If we set                   then this is the same as setting 

i.e. we have subtracted out the time-mean “forcing” due to the transients. 

Again, we can calculate this forcing by initializing the unforced model from a series of values of    
      and then taking the time-average. 

If the model is now initialized with       it will develop in time. In fact we hope it will develop its own 
explicit transient activity. And we hope that it will be realistic. But there is no guarrantee that this 
“simple GCM” will have a realistic climatology. The only thing that is guarranteed is that:

dΦ
dt

= LΦ +Φ †QΦ + f(t)
dΨ
dt

= LΨ +Ψ †QΨ + g

g = f g = −LΦ− Φ†
QΦ− Φ′†QΦ′

LΨ + Ψ†
QΨ + Ψ′†QΨ′ = LΦ + Φ†

QΦ + Φ′†QΦ′

Φ

Φ



it works !
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asymmetry of the mean response

Perform long integrations with 
equal and opposite heating (El 
Niño) and cooling (La Niña). 

Look at the difference between 
them and a control integration.

The asymmetry comes from 
dynamical nonlinearity: 
differences in the transient 
feedback. 



time-independent solutions
It would be nice to get a time independent solution - i.e. a solution of

           to compare with the equilibrated GCM reponse.

Not easy if Lmean is unstable (i.e. has positive values of σ). If this is the case any integration of the 
model will end up with a growing mode that dominates, and is unrelated to the forcing f’.

We can stabilize Lmean by subtracting a multiple of the identity matrix I. This does not affect the 
modal structure of L. We can then find the time indepenent solution by integration of 

and then extrapolate back to λ = 0 to get 
our time independent linear solution.

LmeanΨ′ + f ′ = 0

dΨ′

dt
= (Lmean − λI)Ψ′ + f ′

λ2λ1

TILS

λ
0



application to a midlatitude SST anomaly

500 mb geopotential 
height response to a 
heating anomaly over 
a midlatitude SSTA

Linear response using perturbation model Simple GCM mean response

dΨ′

dt
= LmeanΨ′ + f ′
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application to a midlatitude SST anomaly

500 mb geopotential 
height response to a 
heating anomaly over 
a midlatitude SSTA

Linear response using perturbation model Simple GCM mean response

Ψ′†QΨ′
deduce 
transient 

forcing term

dΨ′

dt
= LmeanΨ′ + f ′

add it in here

get this



nudge nudge
Another way of forcing a model is to push it towards a desired climatology in a restricted region, 
and look at the effect on the solution outside that region. This is called nudging. 

Nudging involves an additional constant forcing term and a damping term.

In a linear experiment, the appropriate model is:

This can be useful technique for diagnosing climate
anomalies or simulating other people’s GCMs with 
a simple model.

dΨ
dt

= LΨ +Ψ †QΨ + g +
(

Φn −Ψ
τ

)

dΨ′

dt
= LmeanΨ′ + ε

(
Φn − Φ

τ

)
− Ψ′

τ



effect of the tropics on the extratropics in 2000
time independent 
linear solutions

nuging the tropical 
band in different 
regions

AMERICA      AFRICA      ASIA

ERA40
2000 ANOMALY

ENTIRE 
TROPICS


