Second Split Workshop in Atmospheric Physics and Oceanography

PREDICTABILITY OF SEVERE HYDROMETEOROLOGICAL EVENTS IN THE MEDITERRANEAN AREA

J. Cisneros¹ and A. Parodi²

¹ New Mexico Tech, Socorro, NM

² CIMA Research Foundation, Savona, Italy

PREDICTABILITY

SEVERE HYDROMETEOROLOGICAL EVENTS

Their level of predictability is strongly dependent on the degree of constraints on their spatial-temporal evolution set from large scale dynamics and boundary processes.

A <u>convective time scale</u> for equilibrium and non-equilibrium conditions (Done et al., 2006)

Convective timescale $\tau_c = \frac{CAPE}{dCAPE/dt}$ $\sim \frac{CAPE}{Precip. rate}$

Equilibrium expected when τ_c small compared to forcing timescale

$$\frac{dCAPE}{dt} = \frac{1}{3600} \frac{i_R L_v g}{T_0 \rho_0 c_p} \approx 0.045 \times i_R$$

where

 i_R is the rainfall intensity [mm/h]

- L_{v} is the latent heat of vaporization
- g is the gravity acceleration

 c_p is the specific heat at constant pressure

- T_0 is the air temperature
- $\rho_{\rm 0}$ is the air density

A <u>convective time scale</u> for equilibrium and non-equilibrium conditions

Italian Raingauge network

network density: between 1gauge/50km² and 1 gauge/200km²

Severe rainfall events classification

Molini et al. (2009) developed a procedure to single out heavy rainfall events and to classify them on the basis of:

- 1. Duration;
- 2. Spatial extent,
- 3. Large/small-scale triggering mechanism

Severe rainfall events classification

Type I events:

- Long-lived (lasting more than 12 hours)
- Spatially distributed (more than 50x50 km²)

Type II events:

- Brief and localized (lasting less than 12 hours)
- Spatially concentrated (less than 50x50 km²)

Severe rainfall events classification

The event classification procedure was applied to the Italian Raingauge Network observations from January 2006 to December 2008.

81 severe events:

- <u>51</u> events <u>Type I</u> events lasting more than 12 hours and striking an area bigger than 50x50 km²;
- <u>30</u> events <u>Type II</u> events lasting less than 12 hours and striking an area smaller than 50x50 km².

Predictability and event characterization

Are the differences between these two types of event associated with different mechanisms of control of the precipitation by dynamical processes in the atmosphere?

Radiosounding network

To calculate CAPE and _c for the events classified we cannot use Italian radiosoundings due to the coarseness of the network

We resort to the use of ERA-Interim products to estimate CAPE values over the area and for the duration corresponding to each event classified for the period 2006-2009

CAPE VALUE COMPARISON

c computation

- ERA-Interim CAPE values were interpolated on the same grid (x = y~10 km) adopted for the interpolation hourly rainfall observations;
- Grid points belonging to each severe event spatial domain were selected and the computation of pixelvalues of _c was performed only over rainy grid (hourly rainfall intensity> 2 mm/h).
- 3. At each hourly time step, a spatial mean value of the adjustment convective timescale _{CE} was computed over the aforementioned rainy points. In this way it was also possible to study the temporal evolution of _{CE} over the whole duration and area of each event.
- 4. As a measure of the equilibrium or non-equilibrium nature of each extreme event, we adopted the average value $_{CM}$ of each $_{CE}$ time series.

Event Distribution

SUMMARY AND CONCLUSIONS

Type I: 45 events out of 51 (about 90%) are characterized by _{CM} values lower than 6h, thus corresponding to equilibrium conditions;

Type II: 20 events out of 30 (about 66%) are characterized by _{CM} values higher than 6h, thus corresponding to non-equilibrium conditions.

The underlying hypothesis of this study seems to be supported by these findings:

- Type I events are largely associated with equilibrium conditions and thus more predictable

- Type II events are characterized by non-equilibrium condition and consequently are expected to be hardly predictable.

New Data

The event classification procedure was applied to the Italian Raingauge Network observations from January 2009 to December 2009.

severe events:

- <u>51</u> events <u>Type I</u> events lasting more than 12 hours and striking an area bigger than 50x50 km²;
- <u>30</u> events <u>Type II</u> events lasting less than 12 hours and striking an area smaller than 50x50 km².

New Results

New Results - Sardinia 1

New Results - Sardinia 2

New Results - Sardinia 4

New Results - Sicily 3

New Results - Sicily 4

Correlations?

Thank you!

