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Lagrangian Random Particle Dispersion Modeling

Individual element of the plume

before

now

•No fixed dimensions of the plume
Winds and
turbulence
determine position
at each time step

p
•Applicable to any terrain
•Applicable to any surface type
•Applicable to any meteorological conditions

Source

Th iti f thThe composition of the 
individual elements 
makes the plume

Source



Lagrangian random particle 
di i d l M i i i ldispersion model - Main principles

• Numerical model which uses a large number of g
hypothetical particles to simulate the transport and 
dispersion of atmospheric pollutants

• Particles are subjected to 3D atmospheric fieldsParticles are subjected to 3D atmospheric fields
• Dispersion of the simulated plume is directly linked to the 

turbulence structure without the Gaussian assumption
T i ll 500 ti l i t itt d f h• Typically, 500 particles per minute are emitted from each 
source

• The particles are continuously traced in time and space y
and their population represents the plume structure 

3



Forward and backward models using the 
ti l d li t lsame particle modeling tool

Forward model: particles released from 
sources are traced

For receptor-oriented modeling, the 
sign of the time step is reversed and 

Source 1

trajectories are run backward.

Potential sources

Source 2

Receptor

Source 3



Computation of concentrationsComputation of concentrations
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Particle residence timeParticle residence time
Receptor 
volume
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Lagrangian modeling –
Theoretical basis (II)

• 1908 Langevin• 1908 Langevin

1 ( )du a u b f t=− +1 ( )a u b f t
dt

+

u – particle velocity; t – timep y;

a1 – damping coefficient due to viscous drag

b – coefficient

f( ) idl i l i f
7

f(t) – rapidly varying acceleration component from 
a irregular and asymmetrical molecular 
bombardment of the particle.



Lagrangian modeling –
Theoretical basis (III)

• The Langevin equation is a Lagrangian stochastic 
differential equationdifferential equation. 

• Lagrangian framework – system of coordinates 
based on the position (x,y,z) of a particle at time t p ( ,y, ) p
relative to its position (a,b,c) at a reference time t0.

• Lagrangian coordinates are more natural for 
d ibi fl id ti b t diffi lt tdescribing fluid motion, but are more difficult to use 
compared to Eulerian coordinates.
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Lagrangian random particle (LAP)Lagrangian random particle (LAP) 
model – Main algorithms (II)

• The subgrid-scale velocity components are 
iteratively determined as:

)()()()(
)()()()(

ttvtRttvtv
ttutRttutu

svrr

surr
Δ−+ΔΔ−=
Δ−+ΔΔ−=

R  R  and R are the Lagrangian autocorrelation functions 

)()()()( ttwtRttwtw swrr Δ−+ΔΔ−=

- Ru, Rv, and Rw are the Lagrangian autocorrelation functions 
for each velocity component, and us, vs, and ws are the 
random fluctuations of the velocity components.
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random fluctuations of the velocity components.



Lagrangian random particle (LAP)Lagrangian random particle (LAP) 
model – Main algorithms (VII)

• The bounds for the random components are• The bounds for the random components are 
determined from the statistical properties of the 
turbulence transfer and the autocorrelation function :
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Initial distribution of particles –Initial distribution of particles 
only wind, no turbulence, no dispersion
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Distribution of particles – STABLE conditions:
wind + low turbulence = weak dispersionwind + low turbulence = weak dispersion
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Distribution of particles – UNSTABLE conditions:
wind + high turbulence = strong dispersionwind + high turbulence = strong dispersion
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Population of particles – STABLE conditions:
wind + low turbulence = weak dispersionwind + low turbulence = weak dispersion

Source

14Plume edge30 particles ; Real cases: 105 – 106 part.



Population of particles – UNSTABLE conditions:
wind + high turbulence = strong dispersionwind + high turbulence = strong dispersion

Source

15Plume edge30 particles; Real cases: 105 – 106 part.



Lagrangian stochastic dispersion modeling 
within complex modeling systems

• 1 Forward modeling: A hybrid model for ozone1.  Forward modeling: A hybrid model for ozone 
forecasting

- Meteorological model MM5 (Grell et al 1994Meteorological model MM5 (Grell et al. 1994, 
NCAR) and WRF (Skamarock et al. 2005)

- Lagrangian stochastic dispersion model (KoracinLagrangian stochastic dispersion model (Koracin 
et al. 2007, AtmEnv, 2010, JAWMA; Luria et al. 
2005, AtmEnv; Erez et al. 2008, AtmEnv; 
Lowenthal et al. 2010, JAWMA)

- Eulerian chemical model with RACM (Stockwell 
et al. 1997, JGR)



Lagrangian stochastic dispersion modeling 
within complex modeling systems

• 2. Inverse LS modeling: Evaluation of receptor2.  Inverse LS modeling: Evaluation of receptor 
modeling  & assessment of regional emission 
sources (eastern U.S.)

- EPA generated Meteorological model MM5 
(Grell et al. 1994, NCAR) fields for the summer 
2002

- CMAQ baseline simulations (synthetic data set)
- HYSPLIT and EDAS trajectory computations
- Lagrangian stochastic dispersion model (Koracin 

et al. 2007, Atm. Environ.)



1.  Forward modeling: A hybrid 
model for ozone forecasting

- MM5: Regional meteorological fields (wind, 
pressure, temperature), grid cell 5X5 km
Emissions (stationary mobile)- Emissions (stationary, mobile)

- Lagrangian stochastic model – transport and 
dispersionp

- Eulerian box chemistry model - RACM chemistry 
mechanism
Hybrid model Linkage of all these- Hybrid model – Linkage of all these 
components: Simulates physical and chemical 
processes in troposphere 



Model domains
Grid resolution
- MM5: 5x5 km2
- Box chemistry model: 15x15 km2
Each particle is apportioned by theEach particle is apportioned by the 
emissions and carries “chemical 
dimensions”



Each Lagrangian particle has multi-dimensional identifiers (spatial,ambient
meteorology, chemical components, ID number, time)

Particlek(x,y,z,T,RH,p,chmi….chmj,ID,t)
For each time step Δt, there are k particles in a grid cell
Each particle (mth) is disaggregated into n chemical species p ( ) gg g p
Pm,n – mass of particle m of chemical species n
PTot(n) – total mass of chemical n from all particles in the grid cell is converted into
concentration of this species
Chemical computation is then performed for each species and each grid cellChemical computation is then performed for each species and each grid cell
The predicted concentrations are converted back into the new total mass

( )Tot n t tP +Δ↓
The mass is then apportioned back to each particle by a weighted average:

( )Tot n t t+Δ
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Each Lagrangian particle has multi-dimensional identifiers (spatial,ambient
meteorology, chemical components, ID number, time)

Particlek(x,y,z,T,RH,p,chmi….chmj,ID,t)

Distribution of newly formed species is based on a factor f intermixing efficiency as a 
function of diffusion, time scale, mixing height, and turbulence intensity
In that case, the apportionment is updated by:

( , )
( ) ( ) ( )

m n t
m n t t Tot n t t n

P
P P B f+Δ +Δ

↓
⎡ ⎤↓ = ↓ −⎣ ⎦↓( , ) ( ) ( )
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f
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Where B(n) is the production result between the time steps t and t+Δt for particles 
that had the new chemical species



Aircraft measurements

Comparison: Hybrid & CAMx modelsComparison: Hybrid & CAMx models 
vs. aircraft data

Dots represent aircraft measurements of ozone (ppbv) with spatial interpolation 
i K i iusing Kriging.

A mapped hourly predictions of ozone by the Hybrid and CAMx models were cut in
hourly sections corresponding to the aircraft flight time and locations.y p g g

A mosaic from the hourly sections was assembled to match the aircraft flight
information



a. Aircraft b. Hybrid model c. CAMx model

a. Ozone concentration (ppbv) at 300 m AGL from kriged aircraft observations 
(Sh d d l ) d i ft b ti ( l d t ) 7 J l 2003 t

7 July 2003

(Shaded colors) and aircraft observations (color dots) on 7 July 2003 at 
1200-1600 LT.
b. Ozone concentration (ppbv) at 300 m AGL from LAPIB model 
(Shaded colors) and aircraft observations path (dots) on 7 July 2003 at ( ) p ( ) y
1200-1600 LT
c. Ozone concentration (ppbv) at 300 m AGL from CAMx model 
(Shaded colors) and aircraft observations path (dots) on 7 July 2003 at 1200-1600 LT 



a. Aircraft b. Hybrid model c. CAMx model

a. Ozone concentration (ppbv) at 300 m AGL from kriged aircraft observations 
(Sh d d l ) d i ft b ti ( l d t ) 9 J l 2003 t

9 July 2003

(Shaded colors) and aircraft observations (color dots) on 9 July 2003 at 
1300-1500 LT.
b. Ozone concentration (ppbv) at 300 m AGL from LAPIB model 
(Shaded colors) and aircraft observations path (dots) on 9 July 2003 at ( ) p ( ) y
1300-1500 LT
c. Ozone concentration (ppbv) at 300 m AGL from CAMx model 
(Shaded colors) and aircraft observations path (dots) on 9 July 2003 at 1300-1500 LT 



Summary - Forward Lagrangian 
h i d li H b id d lstochastic modeling – Hybrid model

• Hybrid model consisting of LagrangianHybrid model consisting of Lagrangian 
transport and dispersion with Eulerian 
chemistry can be used in complexchemistry can be used in complex 
environmental conditions

• Using aircraft data from the field program• Using aircraft data from the field program 
in southern California, the hybrid model 
results compared better than an Eulerianresults compared better than an Eulerian 
photochemical model (CAMx)



Lagrangian stochastic dispersion
Inverse modeling

• 2.  Create a “model data base” 
- EPRI/Sonoma Technology provided “synthetic” 

IMPROVE data sets using the SMOKE/ CMAQ/MM5 
modeling system for the eastern U.S.modeling system for the eastern U.S.

- Synthetic IMPROVE data are computed at Brigantine 
National Wildlife Refuge (BRIG), NJ, and Great Smoky 
Mountains National Park (GRSM) TN for summer (JulyMountains National Park (GRSM), TN, for summer (July-
September) and winter (January-March), 2002. 

- HYSPLIT and EDAS trajectory computations
- Lagrangian stochastic dispersion model (Koracin et al. 

2007, 2010, AtmEnv; Luria et al. 2005, AtmEnv; Erez et 
al. 2008, AtmEnv, Lowenthal et al. 2010, JAWMA))



Forward and backward models using the 
ti l d li t lsame particle modeling tool

Forward model: particles released from 
sources are traced

For receptor-oriented modeling, the 
sign of the time step is reversed and 

Source 1

trajectories are run backward.

Potential sources

Source 2

Receptor

Source 3



Backward Lagrangian stochastic dispersion modeling
P ti l l d t ( t) d ll t d t ( t ) ith th• Particles released at (x,t) and collected at (x0,t0) with the 
backward-time conditional probability density Pb (x0,t0/x,t)
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Lagrangian stochastic dispersion modeling 
within complex modeling systems

• 2 Inverse LS modeling: Assessment of2.  Inverse LS modeling: Assessment of 
regional sources (eastern U.S.)
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Specifics of the “synthetic” model results
• Primary PM2.5 source profiles for 43 source categories were taken from 

the EPA’s Speciate and DRI’s PM source profile libraries. The profiles 
were used in the CMAQ model to produce hourly multi-species 
IMPROVE-style concentration data (EPRI/STI)IMPROVE-style concentration data (EPRI/STI).

• The meteorological input to CMAQ was 12 km resolution data 
generated with the NCAR Mesoscale Meteorological Model (MM5) 
(EPA).

• 43 additional variables were added to each source profile, with unique 
values equal to the primary PM2.5 emitted by that source. This allows 
us to follow each source’s primary PM2.5 contribution to each receptor 
site.

• Contributions from each of the seven regions were estimated by 
sequentially running the model with 30% of a given region’s 
anthropogenic emissions removed.

• For summer the “true” regional contributions were provided to DRI as a• For summer, the true  regional contributions were provided to DRI as a 
guide in the receptor modeling analysis.

• Hourly average PM2.5 concentrations at BRIG and GRSM were given 
to DRI for a “blind” analysis, which means that the “true” contributions 
were retained by EPRI and were not provided to DRIwere retained by EPRI and were not provided to DRI. 



Great Smoky, TN

Brigantine, NJ



Average “True” Regional Contributions to Sulfate atAverage True  Regional Contributions to Sulfate  at 
Brigantine and Great Smoky
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Figure 2. CMAQ-simulated 24-hr average SO4
2-concentrations (µg m-3) at BRIG (dashed) and GRSM (solid) from all regions R1-R7 

shown in Fig. 1 for the four case periods. 



FlowchartFlowchart



Figure 3. The spatial distribution of LSPDM particles from the baseline simulations (green from BRIG receptor and light blue from GRSM)
at -168 hrs for cases B1 and G1 (top panel), and B2 and G2 (bottom panel).  MM5-HYSPLIT (HMM5 = HM used in the text) back 
trajectories from BRIG (solid black) and GRSM (dashed red) for 100 m 1500 m and 3000 m heights above ground are superimposedtrajectories from BRIG (solid black) and GRSM (dashed red) for 100 m, 1500 m, and 3000 m heights above ground are superimposed. 
Emission source region numbers and the receptor sites BRIG and GRSM are also shown in the figure. Note that LSPDM particles 
simulated using receptor depth 1500 m or less are shown in the figure under the 1500 column.





Figure 5.  Histograms of normalized 
average residence times (y-axis) for each 
region obtained from the baseline 168 hr 
simulated LSPDM particle back trajectories 
f th BRIG (B1 B4 b d) d GRSMfor the BRIG (B1-B4; a,b,c,d) and GRSM 
(G1-G4; e,f,g,h) cases. CMAQ simulated 
168 hr totals of 24-hr averaged SO4

2-

concentrations in the regions R1-R7 is 
normalized by their regional maximum.  
Lines in the figure indicate as follows: 
CMAQ, LSPDM (100 m), LSPDM (500 m), 
LSPDM (1000 m), LSPDM (1500 m), 
LSPDM (3000 m) and the total or ensemble 
mean  (from the normalized pairs that are 
used in the computation of Overallc in 
Tables 2-5).)



Figure 6.  Histograms of normalized 
average residence times (y-axis) for each 
region obtained from the baseline 168 hr 
simulated HYSPLIT particle back 
t j t i ( i MM5 i t ) f th BRIGtrajectories (using MM5 inputs) for the BRIG 
(B1-B4; a,b,c,d) and GRSM (G1-G4; e,f,g,h) 
cases. CMAQ simulated 168 hr totals of 24-
hr averaged SO4

2-concentrations in the 
regions R1-R7 is normalized by their 
regional maximum.  Lines in the figure 
indicate as follows: CMAQ, HYSPLIT (100 
m), HYSPLIT (500 m), HYSPLIT (1000 m), 
HYSPLIT (1500 m), HYSPLIT (3000 m) and 
the total or ensemble mean  (from the 
normalized pairs that are used in the 
computation of Overallc in Tables 2-5).)



PM and HYSPLIT trajectory positions = hourly
48 HYSPLIT trajectories
and 1014000 PM trajectories for this case study



Figure 8 of the pairs of exact agreement for each emission source region R1 R7 between CMAQ and baseline LSPDMFigure 8. of the pairs of exact agreement for each emission source region R1-R7 between CMAQ and baseline-LSPDM 
(left), CMAQ and HM(center), and CMAQ and HE(right panel). A sample size of 40 (=4 cases × 2 receptors × 5 vertical 
depths)  is used.



Animation of 12 hour particle positions obtained from the
Particle model backward (Inverse mode) simulations 

and backtrajectories obtained from 
HYSPLIT (HYb id Si l P ti l L i I t t d T j t ) d lHYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model

7 days (168 h) backward 
from 07/20/02 at 00 UTC – 8 PM EST on 07/19/02 

to  07/13/02 00 UTC – 8 PM EST on 07/12/02o 0 / 3/0 00 U C 8 S o 0 / /0

0.05° × 0.05° × 100 m 0.05° × 0.05° × 500 m

Atmospheric forcing: MM5 outputs (12-km grid resolution)

Receptor location : 
BRIG: Brigantine (74.45º W, 39.46º N) 

Particulate emission rate = 
50 particles/30 sec (time step)

Area source (0.05º)



Forward and Inverse simulations
0.05° × 0.05° × 10 m
Source: Indianapolis

single source (a priori) and many receptors. Source 
in region 5 (state of Indiana) and BRIG and GRSM 

th t
single receptor (BRIG) and many source 

Forward mode 
Inverse mode 

are the receptors. elements (from the regions 1-7).

Developed inversion modeling tools confirm the particle dispersion in the forward 
d ( h th ti l t ) ith th i l id tifi ti f th tmode (where the particles go to) with the regional identification of sources that 

contributes the receptor at BRIG using inversion approach (where the particles 
originate from).



Forward simulations
13 J l 2002 t 00 UTC + 144 h13 July 2002 at 00 UTC + 144 hrs

Backward (inverse) simulations
20 July 2002 at 00 UTC ‐ 144 hrs



Summary
• Lagrangian stochastic dispersion models show significant 

capabilities in complex atmospheric and environmental 
conditions on variety of scales – they should be more tested 
and utilized in regulatory applications.

• Hybrid modeling offers possibilities of linking chemical y g p g
modules of various complexities.

• Currently, Lagrangian dispersion – Eulerian chemistry is a 
feasible toolfeasible tool.

• Next research and applications: linking Lagrangian 
dispersion with Lagrangian chemistry.
A h d i i L i h i h• Another advantage in using Lagrangian stochastic approach 
is possibility of either forward or inverse modeling.

• Inverse modeling offers enhancement of standard back g
trajectory and receptor modeling approach.


