Statistical Mechanics

PHYS 508

Problem Assignment \# 9

due 05-01-15

1. 1-d Ising model (6 points)

A one-dimensional lattice consists of $N+1$ equally spaced Ising spins coupled by nearestneighbor exchange interactions. The Hamiltonian for the system is

$$
H=-J \sum_{j=1}^{N} S_{j} S_{j+1}
$$

where J is a positive constant.
For this problem, we define a "kink" as a place in the Ising chain where all spins to the right are pointed in a direction opposite those on the left (see LeBellac page 157 for an illustration). A configuration with m kinks has the energy

$$
E_{m}=-N J+m 2 J .
$$

(a) Schematically represent the configurations corresponding to the states of minimum and maximum energy, $E_{\text {min }}$ and $E_{\max }$, respectively. Give the number of kinks and the degeneracies associated with these two states.

Now consider the Ising chain in contact with a heat bath at temperature T.
(b) Show that the partition function for the 1-d Ising model may be written as

$$
Z=2^{N+1}(\cosh (\beta J))^{N} .
$$

(c) Calculate the average energy E and the average number of kinks $\langle m\rangle$. Find an expression for the probability p that two neighboring spins are antiparallel. Sketch and discuss p as a function of T.

