Statistical Mechanics

PHYS 508

Problem Assignment # 7

Spring 2015

due 03-30-15

1. Paramagnets (4 points)

Consider a system of N noninteracting spins that can point either up or down in an external magnetic field H. Each up-spin contributes an energy $-\mu_B H$, and each down-spin contributes an energy $+\mu_B H$, so that the total energy of a state with n_+ up-spins and n_- down-spins is

$$E_{n_+n_-} = -(n_+ - n_-)\mu_B H$$

where μ_B is the Bohr magneton. Let the system be in contact with a heat bath of temperature T.

- (a) Calculate the system's partition function.
- (b) Calculate and discuss the internal energy and the specific heat.

2. Two-dimensional quantum gases (7 points)

- (a) Find the density of states per unit volume, $\omega(\epsilon)$, for a degenerate quantum gas in d = 2 dimensions.
- (b) Show that in a 2-d Bose gas there is no Bose-Einstein condensation.
- (c) Find an expression for the Fermi energy in terms of number density for a 2-d Fermi gas.

3. Chemical potential (9 points)

Calculate and sketch the temperature dependence of the chemical potential of an ideal Fermi gas.

- (a) at low temperature, up to and including order $(T/\mu)^4$. *hint:* Use the Sommerfeld expansion to expand μ in powers of (T/μ) , then solve for μ by iteration.
- (b) at high temperature $(T \gg \epsilon_F)$, up to and including the next-to-leading term.