# Statistical Mechanics 

## PHYS 508

## Problem Assignment \# 7

due 03-30-15

1. Paramagnets (4 points)

Consider a system of $N$ noninteracting spins that can point either up or down in an external magnetic field $H$. Each up-spin contributes an energy $-\mu_{B} H$, and each down-spin contributes an energy $+\mu_{B} H$, so that the total energy of a state with $n_{+}$up-spins and $n_{-}$down-spins is

$$
E_{n_{+} n_{-}}=-\left(n_{+}-n_{-}\right) \mu_{B} H
$$

where $\mu_{B}$ is the Bohr magneton. Let the system be in contact with a heat bath of temperature $T$.
(a) Calculate the system's partition function.
(b) Calculate and discuss the internal energy and the specific heat.
2. Two-dimensional quantum gases (7 points)
(a) Find the density of states per unit volume, $\omega(\epsilon)$, for a degenerate quantum gas in $d=2$ dimensions.
(b) Show that in a $2-d$ Bose gas there is no Bose-Einstein condensation.
(c) Find an expression for the Fermi energy in terms of number density for a 2-d Fermi gas.

## 3. Chemical potential (9 points)

Calculate and sketch the temperature dependence of the chemical potential of an ideal Fermi gas.
(a) at low temperature, up to and including order $(T / \mu)^{4}$.
hint: Use the Sommerfeld expansion to expand $\mu$ in powers of $(T / \mu)$, then solve for $\mu$ by iteration.
(b) at high temperature $\left(T \gg \epsilon_{F}\right)$, up to and including the next-to-leading term.

