Statistical Mechanics

PHYS 508 Spring 2015
Problem Assignment # 5
due 03-06-15

1. Density matrix (9 points)
Consider a free particle of mass m in a cube of volume L3. Assume periodic boundary
conditions for the wave function: ¢¥(x + L,y,2) = ¢(z,y + L, z) = ¥(z,y,z + L) = ¥(x,y, 2).

(a) Determine the canonical density matrix
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in real space representation (i.e., determine the matrix elements (Z|p|7)).

(b) Show that for L — oo, the result approaches
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2. The harmonic oscillator revisited (20 points)

Consider a 1-d harmonic oscillator with Hamiltonian
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that is in contact with a heat bath.

(a) Determine the distribution function p(q) for the coordinate g of a classical oscillator (i.e.,
the probability density for finding the oscillator at position q).
(b) The same a part a, but for a quantum mechanical oscillator.

hint: (i) From QM, we know that the operator 7 for the observable 'particle density’,
whose expectation value yields the probability density for finding the particle at point ¢
is, in real space representation, (x|n|y) = d(x — y)d(x — q).

(ii) Use the expressions for (d/dx)¢n(z) and x 1, (x), with ¥, (z) the oscillator energy
eigenfunctions, to derive a differential equation for p(q).

(c) Also determine the distribution function for the momentum in the quantum mechanical
case, and discuss all of your results, in particular the limits hiw << kgT and hw >> kpgT.

(d) Find the canonical density matrix in real space representation.

hint: (i) For the Hermite polynomials, use the following integral representation:
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(ii) The general Gaussian integral
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with A a positive definite, real symmetric matrix, can be performed by diagonalizing A.
The result is
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