Statistical Mechanics

PHYS 508

Problem Assignment # 1

Spring 2015

due 1-23-15

1. Phase flow (4 points)

Consider a point mass in d = 1 subject to a constant force f, so that the equation of motion is

$$\ddot{q}(t) = f/m$$

- (a) Determine the phase flow. Does Liouville's theorem hold?
- (b) Does Poincaré's theorem hold? Justify your answer.

2. HO phase space (6 points)

Consider an ensemble of classical one-dimensional harmonic oscillators.

- (a) Let the displacement x of an oscillator as a function of time t be given by $x = A\cos(\omega t + \phi)$. Assume that the phase angle ϕ is equally likely to assume any value in the range $0 < \phi < 2\pi$. The probability $w(\phi)d\phi$ that ϕ lies in the range between ϕ and $\phi + d\phi$ is then simply $w(\phi) = (2\pi)^{-1}d\phi$. For any fixed time t, find the probability P(x)dx that x lies between x and x + dx by summing $w(\phi)d\phi$ ovar all angles ϕ for which x lies in this range. Express P(x) in terms of A and x.
- (b) Consider the classical phase space for such an ensemble of oscillators, their energy being known to lie in the small range between E and E + δE. Calculate P(x)dx by taking the ratio of that volume of phase space lying in this energy range and in the range between x and x + dx to the total volume of phase space lying in the energy range between E and E + δE (see figure). Express P(x) in terms of E and x. By relating E to the amplitude A, show that the result is the same as that obtained in part a.

3. Rolling dice (8 points)

- (a) Three fair dice are rolled once. What is the probability of throwing six points or less?
- (b) The Chevalier de Méré made bets on dice games that required a higher than 50% probability for
 - i. throwing at least one six in rolling one die four times, and
 - ii. throwing at least one double-six in rolling two dice 24 times.

Where these winning bets?

(c) What are the probabilities for throwing exactly one six and one double-six, respectively?