Statistical Mechanics

PHYS 508
Spring 2015

Problem Assignment \# 1

due 1-23-15

1. Phase flow (4 points)

Consider a point mass in $d=1$ subject to a constant force f, so that the equation of motion is

$$
\ddot{q}(t)=f / m .
$$

(a) Determine the phase flow. Does Liouville's theorem hold?
(b) Does Poincaré's theorem hold? Justify your answer.
2. HO phase space (6 points)

Consider an ensemble of classical one-dimensional harmonic oscillators.
(a) Let the displacement x of an oscillator as a function of time t be given by $x=A \cos (\omega t+$ $\phi)$. Assume that the phase angle ϕ is equally likely to assume any value in the range $0<\phi<2 \pi$. The probability $w(\phi) d \phi$ that ϕ lies in the range between ϕ and $\phi+d \phi$ is then simply $w(\phi)=(2 \pi)^{-1} d \phi$. For any fixed time t, find the probability $P(x) d x$ that x lies between x and $x+d x$ by summing $w(\phi) d \phi$ ovar all angles ϕ for which x lies in this range. Express $P(x)$ in terms of A and x.
(b) Consider the classical phase space for such an ensemble of oscillators, their energy being known to lie in the small range between E and $E+\delta E$. Calculate $P(x) d x$ by taking the ratio of that volume of phase space lying in this energy range and in the range between x and $x+d x$ to the total volume of phase space lying in the energy range between E and $E+\delta E$ (see figure). Express $P(x)$ in terms of E and x. By relating E to the amplitude A, show that the result is the same as that obtained in part a.

3. Rolling dice (8 points)

(a) Three fair dice are rolled once. What is the probability of throwing six points or less?
(b) The Chevalier de Méré made bets on dice games that required a higher than 50% probability for
i. throwing at least one six in rolling one die four times, and
ii. throwing at least one double-six in rolling two dice 24 times.

Where these winning bets?
(c) What are the probabilities for throwing exactly one six and one double-six, respectively?

