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The Aero-Physics Branch at NASA Ames Research Center utilizes a 32- by 48-inch 

subsonic wind tunnel for aerodynamics research. The feasibility of acquiring acoustic 

measurements with a phased microphone array was recently explored. Acoustic 

characterization of the wind tunnel was carried out with a floor-mounted 24-element array 

and two ceiling-mounted speakers. The minimum speaker level for accurate level 

measurement was evaluated for various tunnel speeds up to a Mach number of 0.15 and 

multiple streamwise speaker locations. A variety of post-processing procedures, including 

conventional beamforming and deconvolutional processing such as TIDY, were used. The 

speaker measurements, with and without flow, were used to compare actual versus 

simulated in-flow speaker calibrations. Data for wind-off speaker sound and wind-on tunnel 

background noise were found valuable for predicting sound levels for which the speakers 

were detectable when the wind was on. Speaker sources were detectable 2 – 10 dB below the 

peak background noise level with conventional data processing. The effectiveness of 

background noise cross-spectral matrix subtraction was assessed and found to improve the 

detectability of test sound sources by approximately 10 dB over a wide frequency range. 

I. Introduction 

eroacoustic research is ideally carried out in dedicated facilities that have extensive acoustic treatment
1
 and 

minimal facility drive noise. However, advances in acoustic instrumentation and processing with phased 

microphone arrays
2
 are enabling acoustic measurements in facilities with high background noise that are otherwise 

not well-suited for acoustic studies provided that the source levels of interest are sufficiently strong. The 32- by 48-

inch subsonic wind tunnel at NASA Ames Research Center (ARC) is a hardwall indraft facility with very low 

turbulence
3
 that does not have special acoustic treatments and has not been previously used for acoustic research. 

The goals of this initial aeroacoustic study were as follows: 

1) Assess the effectiveness of obtaining acoustic measurements in the ARC 32- by 48-inch wind tunnel with a 

phased microphone array.  

2) Compare results of two different speaker calibration methods. 

3) Assess the effectiveness of array processing methods, including deconvolutional processing and cross-

spectral matrix subtraction of background noise, in improving the detectability of model noise sources and 

the accuracy of source level measurements. 
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II. Apparatus 

A. Wind Tunnel 

The indraft wind tunnel test section is shown in Fig. 1. The tunnel speed can be set from a Mach number of 0.05 

to 0.15 with an adjustable sonic nozzle downstream of the test section. A large inlet contraction ratio and extensive 

flow conditioning screens were designed for low test section turbulence levels on the order of 0.1%. The wall 

boundary layer is normally 1- to 2-inches thick in the test section; however, devices for increasing the boundary 

layer thickness up to 16 inches on the floor of the tunnel were also used for some test conditions. The floor-mounted 

flush-plate array and ceiling-mounted speakers behind a smooth porous screen (location marked by blue tape) can be 

seen. The test section speed was measured with the two ceiling-mounted pitot-static probes. 

B. Phased Array 

Acoustic measurements for the 

experiment were acquired with an OptiNav 

Array-24 system
4
 with the accompanying 

beamforming software. The array was 

mounted in the floor of the wind tunnel test 

section in a mount/rotation platform. The 

array was not moved during this study. The 

array used Countryman B3 Lavalier 0.22-

inch diameter microphones with a flat 

response of +/- 3 dB over 20-20,000 Hz and 

maximum level of 150 dB. The microphones 

were flush-mounted within a 15-inch 

diameter circle without physical treatment 

such as recessing behind a porous screen. 

The metal array plate was modified to 

accommodate a hot-wire traverse system as 

well as three additional microphones placed 

in a line directly upstream of the traverse 

location. The hot-wire probe measured 

boundary layer properties that will be 

reported later. 

All data including microphone data, hot-

wire fluctuating signals, and speaker input 

signals were acquired with 48 channels of 

MOTU I/O 24 A/D converter with 96 

ksamp/sec, 24-bit simultaneous sampling. 

C. Speakers 

Two speakers were mounted in an acrylic 

plate that fit flush with the top of the test 

section. An Electrovoice EV-DH3 20-Watt 

high frequency driver with 8- impedance 

and a horn radiator provided output from 2 to 

20 kHz. An Altec-Lansing M65 5-inch 

diameter bass/midrange driver with 8- 

impedance capable of receiving up to 25 

Watts from 100 to 8000 Hz provided low-frequency sound. Power between the speakers was distributed with a 

cross-over network with a cross-over frequency of 4000 Hz. The speakers were driven with an amplified GenRad 

1382 pink-noise source. The total crossover input was varied from 0 to 3 Volts rms (Vrms), which corresponded to a 

power level of 0 to 1.1 Watts. The speaker center could be placed 42.5 inches upstream, 6.5 inches upstream, or 26.5 

inches downstream of the array plate center. A metal porous screen covered the speakers that were mounted in the 

ceiling 32 inches above the array. Blue masking tape seen in Fig. 1 marks the speaker locations (the square outline 

marks the higher-frequency speaker; the octagon outline marks the lower-frequency speaker). 

 
Figure 1. Test setup in the wind tunnel test section with 

phased array in the bottom, speakers in the top, and two 

pitot static tubes attached to the ceiling. A hot-wire probe for 

boundary layer measurements is retracted to the surface of 

the array plate. The flow moves from left to right. 
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III. Methodology 

A. Array Processing 

Acoustic propagation through the test section with flow results in phase shifts that differ from no-flow cases. 

This can be accounted for by using convected steering vectors during array processing
2
. For low Mach numbers and 

propagation from a broadside source the primary effect of convection is an apparent shift of the source downstream 

as a function of Mach number by the angle sin
-1

(M). Convection effects in this study were accounted for by applying 

the angular shift consistent with a uniform Mach number in the test section. 

All beamforming processing presented in this report was accomplished with the TIDY algorithm.
5
 Other 

beamforming and noise-reduction methods, such as conventional beamforming, CLEAN-SC, and DAMAS2, were 

evaluated with limited data sets, but TIDY showed the best sidelobe suppression and source visibility for this 

application. 

B. Noise Reduction with Background Noise CSM Subtraction 

Blacodon
6
 recently reported effective reduction of background noise sources by subtracting the cross-spectral 

matrix (CSM) of the empty tunnel background noise from the CSM of model test data at the same flow condition. In 

general, empty test-section background noise is available only at the beginning and/or end of a wind tunnel study 

with the test model removed. In this study the effectiveness of CSM subtraction of empty section background noise 

was also assessed with real and virtual speaker calibration data. For the virtual speaker calibration, the wind-off 

speaker signal was added to the speaker-off background noise signal before processing, as described in detail below. 

The CSM subtraction benefit can be seen in Fig. 2, which depicts hemispheric source location maps for the 1/3 

octave band centered at 1550 Hz. Flow is from right to left at M = 0.15. The fixed background sources at this 

frequency are primarily downstream associated with turbulent wall flow being ingested by the valve controlling the 

sonic throat. Noise from the two pitot static probes was also observed in Fig. 2a (also refer to Fig. 1) but this noise 

was eliminated with CSM subtraction as seen in Fig. 2b. With CSM subtraction applied in Fig. 2b the peak 

background noise levels were reduced from 97 to 89 dB in the same band. 

C.  Wind-on Speaker Calibrations 

The speaker response was recorded for most permutations of wind speed (Mach 0.05, 0.10, 0.15), speaker 

position (42.5 inches upstream, 6.5 inches upstream, and 26.5 inches downstream), speaker input (0Vrms, 1Vrms, 

a)                                                                                  b) 

 
Figure 2. Comparison beamform result with (right) and without (left) CSM subtraction for background 

noise at M = 0.15 and f = 1550 Hz. Note the different sound level scales: 77 - 97 dB for (a) versus 69 - 89 dB 

for (b). Flow is from right to left. 
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3Vrms), and nominal boundary layer thickness (2-inch and 16-inch). Repeat sampling of selected conditions was 

obtained. Acoustic recordings were approximately 80 seconds but all analysis was done with 79-second samples to 

ensure that all samples were of equal length. 

D. Virtual Speaker Calibration 

In-flow speaker calibration is useful to directly determine array response to a known source, but requires the 

fabrication of a streamlined fairing housing for the speakers, and positioning the fairing at all of the source locations 

of interest. For this study (and a similar effort in the 80x120 ft wind tunnel
7
), an estimate of the minimum level of 

sources that could be accurately measured was obtained by simulating in-flow speaker sources by combining signals 

from empty section background noise with wind-off speaker sources, and then processing the resulting composite 

sources.  

IV. Analysis and Results 

A. Comparison of Measured Peak Levels from Real and Virtual Speaker Calibration 

Virtual calibration levels corresponded with real calibration levels to within 6dB over all frequencies and much 

less at most frequencies, as shown in Fig. 3. Differences can be attributed to a variety of causes, including 

directional variations in speaker output as well as changes in speaker loading due to different flow conditions. 

Visual beamforming maps of the real and virtual calibration are practically identical as seen in Fig. 4. 

B.  Source Visibility 

Figure 5 presents spectra of both the empty section background noise (heavy solid line) and wind-off speaker 

spectra with four relative gain levels in 10 dB increments (dashed lines). The tunnel flow conditions presented are 

for a 2-inch boundary layer at M = 0.10 and 0.15, and for a 16 inch boundary layer at M = 0.05, 0.1, and 0.15. The 

background noise spectra exhibit similar overall shape with some differences depending on Mach number and 

boundary layer thickness. In each case, the 1/3 spectra are indicative of the peak beamform level observed over the 

 
Figure 3. Comparison of decibel level predicted by virtual calibration to the actual calibration. 
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hemisphere visible to the array. The boundary layer variations were primarily of interest in a different phase of the 

study that examined the effect of boundary layer turbulence on array microphone coherence. In the present study, 

the two boundary layer conditions were considered to assess order-of-magnitude effects of varying experimental 

conditions. 

 The two signals (wind-off speaker at various output levels and empty-section background noise) were added 

sample-by-sample in MATLAB prior to array processing of the composite signal. The beamformed results were 

then examined for reliable visibility of the speaker sources for each 1/3 octave band frequency with a 20 dB plot 

range. 

Small filled circles in Fig. 5 indicate that the speaker source was unambiguously visible with only array 

processing, while open circles indicate conditions for which the speaker source was visible after subtracting the 

CSM of the empty test section noise prior to array processing of data. As can be seen in Fig. 5, array processing 

without background noise CSM subtraction allowed detection of the source with levels a few dB below the 

background noise. Background noise CSM subtraction allowed detection of the speaker source at levels often 10 dB 

lower or more, depending on frequency. These results are consistent with similar assessments of source visibility in 

the Air Force NFAC 80- by 120-foot wind tunnel at NASA Ames.
7
 Although these facilities are vastly different in 

size, the speed range is similar and the background noise in both are dominated by strong downstream sources 

associated with either the tunnel fan drive or sonic flow valve.  

Similar assessments of minimum detectable source level were made for other flow conditions and speaker 

locations, as reported in Table 1. These results are based on in-flow speaker response at 1Vrms amplifier output and 

utilizing CSM subtraction with TIDY processing. The background noise data used for CSM subtraction were taken a 

short time before or after the primary measurement. For selected conditions, comparisons of the results of 

background noise CSM subtraction showed negligible difference between background noise files that were acquired 

either on the same or different day as the in-flow speaker measurement. 

a)                                                                                  b) 

 
Figure 4. Comparison of beamforming results for real and virtual calibration. Flow Mach number is 0.15, 

processed at Mach number of 0.00. 
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Figure 5. Virtual Calibration noise 1/3 octave spectra and source visibility. Speakers in the 6.5-inch 

upstream position. Insufficient data exists for 2-inch boundary layer at Mach=0.05. “No Subtraction” 

means CSM subtraction is not necessary to visually resolve the source. Data points with an open circle but 

no dot are the test points visible only when using CSM subtraction. 

a)                                                                                          d) 

b)                                                                                           e) 

                                                                                                c) 
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V. Conclusions 

The minimum source levels detectable with a 24-element phased microphone array were recently characterized 

during a study of the NASA Ames 32- by 48-inch subsonic wind tunnel at Mach 0.05, 0.10, and 0.15. These levels 

were estimated with both wind-on speaker sources and composite signals comprised of wind-off speaker 

measurements and empty-test section background noise measurements, with similar results between the two 

methods. Speaker sources were detectable 2-10 dB below the peak background noise level. Deconvolutional 

processing with TIDY reduces apparent source size and sidelobe levels. CSM background noise subtraction further 

improved the detectability of the speaker noise source level by approximately 10 dB over many frequencies. 

Beamforming was consistently poor when the center beamforming frequency was lower than 1000 Hz or higher 

than 25148 Hz , likely due to the size of the test section and phased array and the limited high-frequency speaker 

response. For future acoustic tests in the 32- by 48-inch wind tunnel, the analysis showed that sources of 

approximately 90 dB or higher can be resolved at frequencies as low as 1257 Hz while sources of only 70 dB are 

usually resolved at frequencies up to 10 kHz. Many aeroacoustic configurations of interest have incoherent source 

distributions, and for these situations the sources may be detectable only at higher levels than the acoustically 

compact speaker sources used in this study. 
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