Physics 122
Date: 10/21/15

Questions?
Announcements/Reminders

Exam 2 – Friday. Arrive 15 min. early if you can.

- This week recitation: Have your cheat sheets for exam2 ready!
- Written HW#9 due on Monday, Oct 26 by 9 am.
- MP HW#9 – Due Monday, Oct 26, by 11:59 pm.
- Written HW#10 due on Friday, Oct 30 by 9 am.
- MP HW#10 – Due Friday, Oct 30, by 11:59 pm.
Last class ...

Electron current, current, current density, ...

Today...

Conductivity, resistivity, resistance and resistors.
Last class summary

Drift speed

\[v_d = \frac{eE}{m} \tau \]

Electron current, units [electrons/s]

\[i_e = n_e A v_d = n_e A \frac{eE}{m} \tau \]

Current (I), units [A]

\[I = \frac{dQ}{dt} \]

- For steady current:

\[Q = I \Delta t \]

\[I = i_e e \]

\[I = n_e e v_d e A \]

Current density, units [A/m^2]

\[J = \frac{I}{A} \]

\[J = n_e e v_d \]
Example (Problem 30.11 in the text)

In an integrated circuit, the current density in a 2.5 \(\mu m \times 75 \mu m \)-wide gold film is 7.5 \(\times 10^5 \frac{A}{m^2} \). How much charge flows through the film in 15 minutes?

\[
J = 7.5 \times 10^5 \frac{A}{m^2}
\]

\[
A = 2.5 \mu m \times 75 \mu m = 187.5 \times 10^{-12} m^2
\]

\[
Q = ?
\]

\[
\Delta t = 15 \text{ min}
\]

\[
Q = I \Delta t \quad \text{and} \quad I = JA
\]

\[
\Rightarrow Q = JA \Delta t = 7.5 \times 10^5 \frac{A}{m^2} \times 187.5 \times 10^{-12} m^2 \times 15 \times 60 \text{ s}
\]
\[Q = 127 \, \text{C} \]
Conservation of current and Kirchhoff's Junction Law

\[I_0 = I_1 + I_2 \]

\[\sum I_{in} = \sum I_{out} \]
\[I_3 = I_4 + I_5 + I_c \]

\[I_1 + I_2 = I_3 \]
Conductivity

\[J = n_e e v_d \]

\[\sigma = \frac{n_e e^2 \tau}{m} \]

\[J = n_e e \frac{eE}{m} \tau \]

\[J = \left(\frac{n_e e^2 \tau}{m} \right) E \]

Conductivity \(\sigma \)

units \(\sigma \): \(\frac{A}{m^2 \cdot V} = \frac{A}{mV} \)

\[\sigma = \frac{1}{\rho} \]

\[\sigma = \frac{m}{n_e e^2 \tau} \]

Resistivity
Example (Stop-to-Think)

\[J = \frac{I}{A} \]

\[A = \pi r^2 \]
\[A_1 = \pi (2r)^2 = 4A \]

\[J_a = \frac{I}{A} \quad ; \quad J_b = \frac{2I}{A} = 2J_a \]
\[J_c = \frac{2I}{4A} = \frac{1}{2} J_a \quad \text{and} \quad J_d = \frac{I}{A} = J_a \]

\[J_b > J_a = J_d > J_c \]

* Current requires \(\Delta V \) (E)
how strong is E in the cond?

$E = \frac{\Delta V}{L}$

$\Delta V = V_+ - V_-$

$I = JA = 6EA = 6A \frac{\Delta V}{L} = \frac{A}{S} \frac{\Delta V}{L}$
Resistance

\[R = \frac{\rho L}{A} \]

Unit: \([\Omega]\) Ohm

\[\varepsilon \Omega_{\text{m}} \]

Ohm's Law

\[I = \frac{\Delta V}{R} \]
Ohmic materials:

\[R = \frac{1}{\text{slope}} \]

\[\Delta V \]

Ohm's Law good...

* Resistors
 - used to "regulate" current in circuits
- ideal conductors: \(R = 0 \)
- ideal insulator: \(R = \infty \)
Example (Problem 30.31 in the text)

a) How long must a 0.60-mm-diameter aluminum wire be to have a 0.50 A current when connected to the terminals of 1.5 V battery?

b) What is the current if half this length?

\[
\begin{align*}
\text{a)} & \quad L, \Delta V = 1.5 V \\
& \quad I = 0.50 A \\
& \quad d = 0.60 \text{ mm} \\
& \quad S = 2.8 \times 10^{-8} \Omega m \\
\end{align*}
\]

\[
I = \frac{\Delta V}{R} = \frac{\Delta V}{S L / A} = \frac{(\Delta V)A}{S L} \checkmark
\]

\[
I = \frac{\Delta V \pi (d/2)^2}{S L} \Rightarrow L = \frac{\Delta V \pi (d/2)}{IS}
\]
\[\Rightarrow L = 3.0 \text{ mm} \]

\[L \rightarrow \frac{L}{2} \]

\[L_1 = \frac{(\Delta V) \pi \left(\frac{d}{2} \right)^2}{8 I_1} \Rightarrow I_1 = \frac{2 \Delta V d \left(\frac{d}{2} \right)^2}{75} \]

\[\Rightarrow I_1 = 1.0 \text{ A} \]

\[\text{\underline{I}_1 = 2 I} \]