### **Cross Product**

These are two vectors:



They can be **multiplied** using the "**Cross Product**" (also see <u>Dot Product</u>).

The Cross Product  $\mathbf{a} \times \mathbf{b}$  of two vectors is another vector that is at right angles to both:



And it all happens in 3 dimensions!

# Calculating

You can calculate the Cross Product this way:

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin(\theta) \mathbf{n}$$

|a| is the magnitude (length) of vector a

 $|\mathbf{b}|$  is the magnitude (length) of vector  $\mathbf{b}$ 

 $\theta$  is the angle between  $\boldsymbol{a}$  and  $\boldsymbol{b}$ 

**n** is the <u>unit vector</u> at right angles to both **a** and **b** 

So the **length** is: the length of **a** times the length of **b** times the sine of the angle between **a** and **b**,



Then you multiply by the vector  $\mathbf{n}$  to make sure it heads in the right **direction**.

OR you can calculate it this way:



They both work!

When **a** and **b** start at the origin point (0,0,0), the Cross Product will end at:

• 
$$c_x = a_v b_z - a_z b_v$$

• 
$$c_y = a_z b_x - a_x b_z$$

• 
$$c_z = a_x b_y - a_y b_x$$

Example: What is the cross product of  $\mathbf{a} = (2,3,4)$  and  $\mathbf{b} = (5,6,7)$ 

• 
$$c_x = a_y b_z - a_z b_y = 3 \times 7 - 4 \times 6 = -3$$

• 
$$c_V = a_z b_x - a_x b_z = 4 \times 5 - 2 \times 7 = 6$$

• 
$$c_z = a_x b_y - a_y b_x = 2 \times 6 - 3 \times 5 = -3$$

Answer:  $\mathbf{a} \times \mathbf{b} = (-3,6,-3)$ 

## Which Way?

The cross product could point in the completely opposite direction and still be at right angles to the two other vectors, so we have the:

### "Right Hand Rule"

With your right-hand, point your index finger along vector **a**, and point your middle finger along vector **b**: the cross product goes in the direction of your thumb.



#### Dot Product

The Cross Product gives a vector answer, and is sometimes called the "vector product"

But there is also the **Dot Product** which gives a **scalar** (ordinary number) as an answer.



Question: What do you get when you cross an elephant with a banana?

Answer:  $|elephant| |banana| sin(\theta) n$ 

<u>Question 1 Question 2 Question 3 Question 4 Question 5 Question 6</u> <u>Question 7 Question 8 Question 9 Question 10</u>

Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2013 MathsIsFun.com