PHYSICS 571 – Master's of Science Teaching

"Electromagnetism and Light" Lecture 7 – Labs and demos that you can do with your kit – Part I Instructor – Richard Sonnenfeld

mpsonnenfeld@gmail.com ← Homework and Questions

575-835-6434

Outline Magnetism

Homopolar Motor Galvanometer

Induction

Induction

Transformer

Light

Lenses

Double Slit experiment

Force on a circuit in a magnetic field

$$\vec{F} = I\vec{L} \times \vec{B}$$

Lecture 2, Slide 29

Homopolar Motor

Homopolar Motor:

You can do it! (bold items are in your kit)

Needed:

1 foot of #10 bare copper wire (or #12) 1/2" x 1/2" N48 cylinder magnet

AA battery

Wire dykes

Two pair of pliers

Hammer

Medium size screwdriver

Torque on a current loop is proportional to magnetic moment.

ppyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

 $\vec{\tau} = \vec{M} \times \vec{B}$

You can do it! (bold items are in your kit)

Needed:

Spool of #26 magnet wire

3 clip leads

6-V industrial battery

22, 47, 100, 220, 470, 1kOhm resistors

Magnetic Compass

Soldering iron

One ft x 2 in. x ½ in. wood block (or a wooden ruler)

Toilet paper tube / Scissors

Duct Tape/Electrical tape

Build galvanometer into TP tube (per directions)

Galvanometer: ("Galvo")

Connect purple lead to "+" side of battery and resistor.

You can make holes in your wood block to store your resistors.

Galvanometer: Data Analysis

$$\tan(A) = \frac{B_i}{B_e}$$

$$B_i = B_e \tan(A)$$

Galvanometer: Data Analysis

