PHYSICS 571 – Master's of Science Teaching

"Electromagnetism and Light"
Lecture 4 – Magnetism and
Magnetic Induction
Instructor – Richard Sonnenfeld

mpsonnenfeld@gmail.com ← Homework and Questions

575-835-6434

Outline

Review of magnetic forces and cross products.

Magnetic forces do no Work.

Magnetic Induction

Faradays Law

Examples

Changing B, constant A

Changing A, constant B

Generators

Constant B, rotating A

Rigorous definition of Flux

Magnetic Fields Review CHECK YOURSELF

The source of all magnetism is

- A. electrons rotating around an atomic nucleus.
- B. electrons spinning around internal axes.
- C. both A and B
- D. tiny bits of iron.

Compared to the huge force that attracts an iron tack to a strong magnet, the force that the tack exerts on the magnet is

- a) relatively small.
- b) equally huge.

HEWIT!

The two iron bars look alike, but only one is a magnet.

How can you determine which is the magnet only by investigating their interaction with each other?

Exercise 18

In a cyclotron, protons are subjected to electric and magnetic fields. One field increases the speed of the electrons while the other causes them to follow a curved path. Which is which?

$$F_{\text{magnetic}} = q \vec{v} \times \vec{B}$$

$$F_{\text{electric}} = q \vec{E}$$

Magnetic Force on Moving Charges

Magnetic force on current-carrying wires

- current of charged particles moving through a magnetic field experiences a deflecting force
 - direction is perpendicular to both magnetic field lines and current (perpendicular to wire)
 - strongest when current is perpendicular to the magnetic field lines

Outline

Review of magnetic forces and cross products.

Magnetic forces do no Work.

Magnetic Induction

Faradays Law

Examples

Changing B, constant A

Changing A, constant B

Generators

Constant B, rotating A

Rigorous definition of Flux

Exercise 20

A magnetic field can deflect a beam of electrons, but it cannot do work on the electrons to change their speed. Why?

$$\vec{F}_{\text{magnetic}} = \vec{q} \vec{v} \times \vec{B}$$

$$W = \vec{F} \cdot \Delta \vec{r}$$

Exercise 20

A magnetic field can deflect a beam of electrons, but it cannot do work on the electrons to change their speed. Why?

Magnetic Force on Moving Charges CHECK YOURSELF

The reason that an electron moving in a magnetic field doesn't pick up speed is

- A. magnets only divert them.
- B. only electric fields can change the speed of a charged particle.
- C. the magnetic force is always perpendicular to its motion.
- D. all of the above

Homework 4a

Magnetic Force Worksheet

Outline

Review of magnetic forces and cross products. Magnetic forces do no Work.

Magnetic Induction

Faradays Law

Examples

Changing B, constant A

Changing A, constant B

Generators

Constant B, rotating A

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Faraday's law

- States that the induced voltage in a coil is equal to the rate of change of the "Magnetic Flux" through that coil.
 - Thus, the induced voltage in a coil is proportional to the number of loops, multiplied by the rate of B-field change within those loops
- amount of current produced by electromagnetic induction is dependent on
 - resistance of the coil
 - circuit that it connects
 - induced voltage

Application of Faraday's law

- activation of traffic lights by a car moving over underground coils of wire
- triggering security system at the airport by altering magnetic field in the coils as one walks through
- scanning magnetic strips on back of credit cards
- recording of sound on tape
- electronic devices in computer hard drives, Original iPods
- Generators
- Transformers

It is more difficult to push the magnet into a coil with many loops because the magnetic field of each current loop resists the motion of the magnet.

• The fact that magnets "resist change" is called "Lenz's Law".

Outline

Review of magnetic forces and cross products.

Magnetic forces do no Work.

Magnetic Induction

Faradays Law

Examples

Changing B, constant A

Changing A, constant B

Generators

Constant B, rotating A

Faraday's Law

Changing magnetic fluxes produce electric fields and hence voltages.

$$\int \vec{E} \cdot d\vec{r} = \varepsilon = -\frac{d\Phi_B}{dt} \qquad \varepsilon = \frac{-d\Phi_B}{dt}$$

Lenz's Law (the minus sign in Faraday's law)

Changing fluxes produce currents which would oppose the changing flux.

Ways to change flux

Let B be uniform over the loop. Then

$$\Phi_{B} = \vec{B} \cdot \vec{A}$$

$$\frac{d\Phi_{B}}{dt} = \frac{d\vec{B}}{dt} \cdot \vec{A} + \frac{d\vec{A}}{dt} \cdot \vec{B}$$

- Can move loop into stronger or weaker B.
- ·Can increase/decrease B.
- Can rotate B.
- · Can increase/decrease size of loop.
- · Can rotate loop.

Faraday's law, electromagnets, generators etc.

http://phet.colorado.edu/e n/simulation/faraday

Electromagnetic Induction CHECK YOUR NEIGHBOR

More voltage is induced when a magnet is thrust into a coil

- A. more quickly.
- B. more slowly.
- C. both A and B
- D. neither A nor B

Electromagnetic Induction CHECK YOUR NEIGHBOR

Not only is voltage induced when a magnet is thrust into a coil of wire, but _____ is also induced.

- A. current
- B. energy
- C. power
- D. none of the above

Electromagnetic Induction CHECK YOUR NEIGHBOR

The resistance you feel when pushing a piece of iron into a coil involves

- A. repulsion by the magnetic field you produce.
- B. energy transfer between the iron and coil.
- C. Newton's third law.
- D. resistance to domain alignment in the iron.

Ways to change flux

Let B be uniform over the loop. Then

$$\Phi_{B} = \vec{B} \cdot \vec{A}$$

$$\frac{d\Phi_{B}}{dt} = \frac{d\vec{B}}{dt} \cdot \vec{A} + \frac{d\vec{A}}{dt} \cdot \vec{B}$$

- Can move loop into stronger or weaker B.
- ·Can increase/decrease B.
- Can rotate B.
- · Can increase/decrease size of loop.
- · Can rotate loop.

When current flows in the wire that is placed in the magnetic field shown, the wire is forced upward. If the wire is made to form a loop as shown below, the loop will tend to

- a) rotate clockwise.
- b) rotate counterclockwise.
- c) remain at rest.