PHYSICS 571 – Master's of Science Teaching

"Electromagnetism and Light"
Lecture 2 – Magnetic Forces on
Charges and Currents
Instructor – Richard Sonnenfeld

mpsonnenfeld@gmail.com ← Homework and Questions

575-835-6434

Magnetism and Electromagnetic Induction

"He who controls magnetism controls the universe."

—Dick Tracy

Outline

Magnetic force on a charge

- Magnetic force between two wires
- Vector Cross product and right-hand
- rule
- Force on a charge revisited
- Magnetic field of a straight wire
- Force on a current revisited

If the charge is moving at right angles to the field, then

$$F = qvB$$

If an electron moves at 200 km/s at right angles to a 3 Tesla magnetic field, what force is exerted on it?

$$F = qvB$$

A U-235 ion with a charge of +3 is in a centrifuge and is moving at 1000 km/sec. What B-field is needed to keep it moving in a circle of radius 0.5 meters?

A U-235 ion with a charge of +3 is in a centrifuge and is moving at 1000 km/sec. What B-field is needed to keep it moving in a circle of radius 0.5 meters?

Outline

Magnetic force on a charge Magnetic force between two wires Vector Cross product and right-hand rule Force on a charge revisited Magnetic field of a straight wire Force on a current revisited

Magnetic Force between two wires

Two wires are 5 meters long and each carry 15 amperes while separated by a millimeter. What is the force between them?

$$F = \mu_0 \frac{I_1 I_2 L}{2 \pi d}$$

Magnetic Force between two wires

Wires are assumed
To be of same length
"L". Distance

Between them is "d".

$$F = \mu_0 \frac{I_1 I_2 L}{2 \pi d}$$

"Opposite" currents repel.

© 2013 Pearson Education, Inc.

Magnetic Force between two wires

Two wires are 5 meters long and each carry 15 amperes while separated by a millimeter. What is the force between them?

$$F = \mu_0 \frac{I_1 I_2 L}{2\pi d}$$

Magnetic Permeability ---> $\mu_0 = 4\pi \times 10^{-7}$ in air

$$F = \mu_0 \frac{I_1 I_2 L}{2 \pi d}$$
 Force between two parallel wires

Electric Permittivity
$$--->$$
 $\epsilon_0 = 8.86 \times 10^{-12}$ in air

$$F = \frac{1}{\epsilon_0} \frac{\lambda_1 \lambda_2 L}{2\pi d}$$

Force between two charged wires Lambda is charge per unit length

DEMO: Force between two wires

Magnetic Poles CHECK YOURSELF

Wire A having 10 Amps runs current parallel to wire B carrying 20 Amps. Which wire feels the greater attractive force?

- A. A
- B. B
- C. Forces are the same
- D. none of the above

Magnetic Poles CHECK YOURSELF

Wire A having 10 Amps runs current parallel to wire B carrying 20 Amps. Which wire feels the greater attractive force?

- A. A
- B. B
- C. Forces are the same ← Newton's third law is true even if you don't know ANYTHING about magnetism...
- D. none of the above

$$F = \frac{\mu_0 L}{2\pi d} I_1 I_2$$

Outline

Magnetic force on a charge
Magnetic force between two wires
Vector Cross product and right-hand
rule

Force on a charge revisited Magnetic field of a straight wire Force on a current revisited

Vector Cross Product

The right-hand rules!

- You can get by with two.
- 1) For magnetic field around a current.
- 2) For cross-products and everything else! (result is ALWAYS perpendicular to plane of

v and B)

Outline

Magnetic force on a charge
Magnetic force between two wires
Vector Cross product and right-hand
rule

Force on a charge revisited

Magnetic field of a straight wire

Force on a current revisited

Magnetic field is measured in "Tesla" (T) Forces are at right angles to fields. Forces are velocity dependent.

$$\vec{F} = q \vec{v} \times \vec{B}$$

$$F = q v B \sin(\theta)$$

Find the magnitude of the magnetic force on a proton moving at $v=2.5\times10^5$ m/s Perpendicular, at 30 degrees, parallel to a B= 0.5 Tesla magnetic field.

> Magnetic force on a charge

$$\vec{F} = q \vec{v} \times \vec{B}$$

$$F = q v B \sin(\theta)$$

$$\vec{F} = \vec{q} \vec{v} \times \vec{B}$$

$$F = \vec{q} \vec{v} \cdot \vec{B} \sin(\theta)$$

Let's do the force on an electron beam

Electrons move to the right and you point the north pole of a magnet at them (into the page).

The beam moves down!

$$\vec{F} = q \vec{v} \times \vec{B}$$

A U-235 ion with a charge of +3 is in a centrifuge and is moving at 1000 km/sec. Why does the ion move in a circle?

A U-235 ion with a charge of +3 is in a centrifuge and is moving at 1000 km/sec. Why does the ion move in a circle?

The magnetic force is always perpendicular to \vec{v} , causing the particle to move in a circle.

© 2013 Pearson Education, In

A U-235 ion with a charge of +3 is in a centrifuge and is moving at 1000 km/sec. What B-field is needed to keep it moving in a circle of radius 0.5 meters?

More practice on direction of magnetic forces

$$\vec{F} = q \vec{v} \times \vec{B}$$

What is direction of initial Force for velocity and B-field given?

More practice on direction of magnetic forces

 $\vec{F} = q \vec{v} \times \vec{B}$

What is direction of B-field to produce the indicated Force for the given velocity?

Outline

Magnetic force on a charge Magnetic force between two wires Vector Cross product and right-hand rule Force on a charge revisited Magnetic field of a straight wire Force on a current revisited

Electric Currents and Magnetic Fields

magnetic field forms a pattern of concentric circles around a current-carrying wire

when current reverses direction, the direction of the field lines reverse

The "hitch-hikers right hand rule" relates current direction to B-field.

Magnetic field of a wire encircles the current.

Test yourself

What is the direction of the current in the wire in the

sketch below?

What do I need to know?

Magnetic field around a straight wire is circular

Given a magnetic field, what is the force on a current or on a moving charge?

Outline

Magnetic force on a charge Magnetic force between two wires Vector Cross product and right-hand rule Force on a charge revisited Magnetic field of a straight wire Force on a current revisited

Ampere's Law --->
$$\int \vec{B} \cdot d\vec{r} = \mu_0 I_{\text{encircled}}$$

$$\vec{F} = q \vec{v} \times \vec{B}$$

$$\vec{F} = nALq \vec{v}_d \times \vec{B}$$

 $\vec{F} = I \vec{L} \times \vec{B}$

Time for the T-shirt!

In standard household wiring, parallel wires about 1 mm apart carry currents of about 15 A.
What is the magnetic field at 1 mm?
What is the magnitude of the force per
Unit length between the wires?

$$B = \frac{\mu_0 I}{2\pi d}$$

$$\vec{F} = I \vec{L} \times \vec{B}$$

In standard household wiring, parallel wires about 1 mm apart carry currents of about 15 A.

What is the magnetic field at 1 mm?

What is the magnitude of the force per unit length between the wires?

$$B = \frac{\mu_0 I}{2 \pi d} \qquad \vec{F} = I \vec{L} \times \vec{B} \qquad F = \mu_0 \frac{I_1 I_2 L}{2 \pi d}$$

The element niobium, which is a metal, is a superconductor (i.e., no electrical resistance) at temperatures below 9 Kelvin. However, the superconductivity is destroyed if the magnetic field at the surface of the wire reaches 0.10 T. What is the maximum current in a straight 3.0—mm diameter superconducting niobium wire?

$$B = \frac{\mu_0 I}{2 \pi d}$$

What is the net force on the wire in the circuit below?

$$\vec{F} = I\vec{L} \times \vec{B}$$

What have we learned?

Magnetic field around a straight wire is circular and we can calculate its magnitude

Given a magnetic field, what is the force and direction on a current or on a moving charge?