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Textbooks rarely give time-domain solutions to antenna
problems. For the case of a finite linear antenna along
which a fixed current waveform propagates, we present
analytical time-domain solutions for the electric and
magnetic radiation (far) fields. We also give computer
solutions for the total (near and far) fields. The current
waveform used as an example in the compuler calcula-
tions approximates that of a lightning return-stroke, a
common geophysical example of the type of radiation
source under consideration.

INTRODUCTION

Most textbooks on classical electromagnetic
theory—® do not consider the problem of radiation
from finite antennas in the time-domain. The
conventional treatment of radiation phenomena
in free space begins with a discussion of the time-
dependent Maxwell equations

V-E=p/e
v-B=0
VxE=—90B/dt

1 9E
VxB= —— 1
wlt 5 M
and their general solutions in terms of retarded
scalar and vector potentials

E=—Vé—0A/ot @)
B=V xA, (3)
where
— L p(r,7 t_R/c) '3
b 0= 4 f R B
e [ J@ =R/
Aw o= /V SRy )
and
1 3¢
v-A+ 2 =0 (6)

for the geometry sketched in Fig. 1. In addition,
a polarization potential or Hertz vector is usually
defined and shown to satisfy a vector wave equa-
tion. From this Hertz vector, electric and mag-
netic fields can be obtained by taking appropriate
derivatives. The reader is assumed to be familiar
with this development.

Next, as an application of this formalism, most
texts find the fields from an infinitesimal dipole
source oscillating at some particular angular fre-
quency. Finite antennas are treated by a spatial
integration of the dipole solutions over the an-
tenna. From this frequency domain analysis,
time-domain solutions may be obtained using the
appropriate Fourier integrals,” but this approach
is quite cumbersome and rarely used in textbooks.
A further disadvantage of this technique is that
most physical insight is obscured.

The primary purpose of this paper is to describe
a finite antenna problem which can be solved
analytically in the time domain. For the case of
a finite linear antenna along which a fixed current
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Fic. 1. The geometry for general solutions of the time-
dependent Maxwell equations.

waveform propagates, we present analytical solu-
tions for the electric and magnetic radiation (far)
fields. Further, we give computer solutions for
the total (near and far) fields for the special
case of a triangular current waveform.

THE PROBLEM

Consider a straight vertical antenna of height H
.above a perfectly conducting ground plane, as
shown schematically in Fig. 2. Boundary condi-
tions at the plane are satisfied by adding the
image antenna shown dashed in Fig. 2. The radius
of the antenna cross-section is assumed to be
very small compared to the wavelength of any
radiation under consideration. The current at any
height will be assumed to be some arbitrary con-
tinuous function, i(z, t), which is zero everywhere
at t=0. With the geometry of Fig. 2, r'=zd.,
and the differential current source J(r/, t—R/c)dV’
becomes 7(z, t— R/c)dzd.. Now, the vector poten-
tial can be computed using Eq. (5) and B by
using (3). The result for a point on the ground
plane a distance D from the antenna base is

H 0
B,(D, ) = g—‘; %i(z, t—R/c)dz
0
o
Mo sind 97(z, t—R/c)
Bo [~EZME PTG (7
+21r-/o ¢R P
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Details of this computation are given in the
Appendix. The first term on the right of Eq. (7)
is the induction field and the second term the
radiation field.

The electric field can be found from Eq. (2)
starting with A and using Eq. (6) in the form

S(R, t) = —c? [ " v-Adr. (8)
: 0

The result for a point on the plane a distance D
from the antenna is

H o2
E.(D, t)=_1_[j; (2 ?;;m"’)

21regy

t
X f iz, —R/c)drdz
0

M o
e SI;‘W) i(z, t—R/c)dz
0

" 3in% 9¢(z, t—R/c) ]
- fo s —a|. ®

Details of this computation are also given in the
Appendix. The first term on the right of Eq. (9)
is the electrostatic field, the second term the
induction or intermediate field, and the third
term the radiation field.

Figure 3 shows computer solutions to Eqgs. (7)
and (9) for the special case where a current pulse
propagates up the antenna as it would a trans-
mission line, i.e.,

i(z, 1) =i(t—2/v), (10)

CONDUCTING
PLANE

Fia. 2. A straight vertical antenna of height H above a
perfectly conducting ground plane.
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Fie. 3. Computer solutions to Egs. (7) and (9) for the case of the current pulse shown in (a) propagating up a 4-km antenna
at a constant speed of 8 X107 m/sec. The electric field intensities which would be observed at distances of 1, 10, and 100 km
are shown in (b) and the magnetic fields in (¢). The time axis for (b) and (¢) is t—D/c, and the dashed vertical line shows
the time the current pulse reaches the top of the antenna. Positively plotted electric field is in the negative z-direction.

where v is the velocity of the current pulse and is
assumed to be constant. These calculations assume
that the current terminates at H and that no
current is reflected downward from the top of
the antenna. The height, H=4 km, speed of
propagation, »=8X 10" m/sec, and input current
waveform (a) in Fig. 3 have been chosen to
resemble a return stroke in a lightning discharge
to ground, which is a common geophysical ex-
ample of this type of radiation source. Further
discussions of the theory and the application to
lightning discharges are given in a series of papers
by Uman and co-workers.8—13

In Fig. 3, the radiation field terms dominate
the E and B waveforms at the initial times for
all distances because the initial time derivative of
the current is large. At 1 km, the near field terms
produce a large hump in E, which represents

the integrals of the current being modulated by
the geometrical factors as the current propagates
upward. The magnetic field at 1 km is dominated
by the induction field term. As the distance D
increases, the B! dependence causes the radiation
fields to dominate the B2 and R—* terms. The
final value of the magnetic field is zero at all
distances because the final current and time-rate-
of-change of current have been chosen to be zero.
The electric field, on the other hand, does have a
finite final value because the current waveform
results in the effective transfer of a point charge

Q= /mz'dt
0

from ground to the top of the antenna which
creates a dipole field given by the well-known
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relation

1 QH

BeD: ) = e (DY

(11)

It should be noted in Fig. 3 that the shape of
the electric and magnetic field pulses at large
distances is the same as the shape of the current
pulse for ¢<H/v+D/c. This is a general, and
perhaps unexpected, result which we now will
prove analytically. Consider the case where D>>H.
Then 6~=x/2, R~D, the radiation field terms
dominate, and Eqgs. (7) and (9) become

1 rA9i(t—z/v—
By~Brun(D, t) = 2= = / di(t—2/v=D/c) .
2rcD Jy

at
(12)
1 1
E~ L) = — — —
Enan (D, 1) 2wey 2D
H y t_‘ —_
5% /’ di(t—z/v—D/c) & (13)
o at
Now, since » is constant,
' ¥ (t— (t—
1(t—2/v) =_vaz(t 2/v) (14)

at dz
and Egs. (12) and (13) can be written
pw (¥ ai(t—z/v—D/c)
dz

Bran(D, t)=—

2xcD 0 0z
(15)
" 3i(t—z/v—D/c)
E D)= Mov/
man(Dit) +21rD 0 0z dz,
(16)

Egs. (15) and (16) can now be integrated
directly to provide

Bran(D, t) = (ugw/2mcD)
X[i(t—D/e)—i(t—H/v—D/e)] (17)
Erap(D, t) = ~ (uw/2xD)
X[i(t—=D/c) —i(t—H/v—D/c)]. (18)
Since i(7) =0 for all 7<0, Egs. (17) and (18)
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become simply

Brap(D, t) = (uw/2wcD)i(t—D/c)  (19)
Erapn(D, t) = — (uw/22D)i(t—D/c) (20)
for t<H/v+D/c.

Equations (19) and (20) can be derived in a
slightly different manner by noting that for
t<H/v+D/c the upper limit to the integrals in
Egs. (15) and (16) can be replaced by the
maximum height from which radiation can be
seen at distance D at time {, zmax=v(t—D/c).
Above zmax, the current is zero, since the front
of the current pulse has not passed zmax at time
t—D/c. Therefore, Eq. (16) becomes

gy [Pme==2(=D/e) g4(t—2/v—D/c)
———dz

E _ o
ran(D, ) 2zDJ, 0z
or
Eran(D, t) = — (pov/2xD)2(t—D/c);
t<H/v+D/c

which is the same as (20).

As is evident from Eqgs. (19) and (20), the
magnetic and electric radiation fields have the
same shape as the current pulse as long as the
pulse has not reached the top of the antenna.
The minus sign in Eq. (20) refers only to the
fact that the electric radiation field in Eq. (9)
points in a direction opposite the current flow.
In a practical situation, if the radiation fields are
measured together with D and v, then the cur-
rent producing these fields can be easily deter-
mined.

For the case t>H/v+D/g both terms in Eqgs.
(17) and (18) must be retained. The second terms
are proportional to —i(¢t—H/v—D/c) and lead
to the “mirror image” of the initial field peak seen
at large distances in Fig. 3 for times after the
current pulse reaches the top of the antenna.
The initial radiation field peak arises because a
propagating current wave has been turned on at
the bottom of the antenna, and the mirror image
arises because the same current wave has been
turned off at the top. We have treated the antenna
as a vertical transmission line terminated in its
characteristic impedance at H; that is, we have
allowed no current to be reflected downward. It



is & relatively simple matter to include a reflected
current in the analysis, if that is desired.

APPENDIX

Consider an infinitesimal vertical dipole of
length dz having a current i(z, t) a distance z
above a perfectly conducting plane, as shown in
Fig. 2. The plane can be replaced by an image
dipole a distance z below the plane. The electric
and magnetic fields at an observation point on
the plane a distance D from the antenna base
are the sums of the fields from the real and
image dipoles.

The differential magnetic field dB of the dipole
can be determined from the vector potential dA
since

dB=V xdA. (A1)

The current has only a z-component, and the
resulting vector potential has only a z-component,
which is given by

#oi(z t=R/0)

dd.= 4r R ’

(A2)

where R is the distance from the dipole to the
point of observation. If we use a spherical coordi-
nate system with an origin at the dipole, then

. 080
dA= %[z(z, t—R/c) "7 P

—i(z, t—R/c) 8'%0 da:l dz, (A3)

where 4g, ds, and 44 are the unit vectors sketched
in Fig. 2. Evaluating the curl gives

~ uadz[  sind 3i(z, t—R/c)
v xdA= 4x [ R oR

+ ?Ii:—za i(z, t—R/C)] 4, (A4)

and using the identity

(2, t—R/c) __ 18i(z, i—R/c)

dR c ot (A5)
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we have
_ % . [z, t—R/c)
dB= o sind [—_R2

L L 9 t=R/c)

R ot ] ds. (A6)

The expression for the magnetic field from the
image dipole will be Eq. (A6) with 6 replaced by
x—0. Now, the total magnetic field at the obser-
vation point is in the ¢ direction (parallel to the
plane) and is given by

odz . [i(z, t—R/c
dB4(R, 0, t) = #20_‘” sing [(—Ezﬁ
+_}_6i(z, t—R/c)

cR at ] - (A7)

The difierential electrie field due to the source
dipole can be determined from Eq. (2) using the
dA from Eq. (A3) and the scalar potential d¢
found by substituting Eq. (A3) in Eq. (8);
that is,

d¢(R; 6, t) =

dz cosf [L

i
& [ i(z, 7—R/c)dr
0

i(z, t—R/ c)]
—. (A8
+ B (A8)
After using Eq. (A5) to convert the spatial
derivatives to time derivatives, we obtain the
following expression for the differential electric
field due to the infinitesimal source dipole,

Teo R3

dE(R, 0,1) = ;i {coso [_& f‘i(z, r—R/c)dr
0
2
+ o (2, t—R/c)] ér

Lo,
+sm0[ﬁ /o i(z, T—R/c)dr

1,
+ C—R;zt(z, t—R/c)

1 3i(z, t—R/c)

+ R ot

Ja}. @9
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The electric field from the infinitesimal image
dipole is given by a similar expression with 6
replaced by w—8, except that the unit vectors in
the R and 8 directions are different for the real
and image dipoles. The total electric field will be
the vector sum of the fields from the real and
the image dipoles and will be in the vertical
direction. The horizontal electric field will be
zero, since no tangential electric field can exist
at the surface of a perfect conductor. The follow-
ing expressions relate the unit vectors dg, ds
(Fig. 2) and dz%, 4, the comparable image
quantities, to d,, g, which are unit vectors per-
pendicular and parallel to the ground plane,
respectively:

dp=—4, cos(w—0) +dx cos[8— (7/2) ]

=4, cosf+dx sind; (A10)
ds=—4, cos[8— (7/2) ]+du cosd
= —d, sinf+dx cosf; (A11)
dri=4a, cos(m—8) + &g cos[6— (7/2) ]
= — 4, cosf+dy sing; (A12)
89'= —4, cos[f— (m/2) J+dxu cos(r—0)
= —4, sind— dx cosd. (A13)

Using these identities, we find the sum of the
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source and image dipole solutions is

dE.(R, 6, t)d.

e [(2~3 sin’)

11
= fo i(z, r—R/c)dr

- 21I'€o
2—3 sin%f
| (2=3sint9)

B i(z, t—R/c)

sin%0 9i(z, t—R/c)
R ot

] 4, (Al4)

for a point on the ground plane.

The total electric and magnetic fields from the
complete vertical antenna of height H are ob-
tained by integrating the infinitesimal dipole
solutions Egs. (A7) and (A14) over the antenna

By(D, t) = /H dB,(R, 6, t)dz  (Al5)
0

B.(D, 1) = fOHdE’,(R, 6,)dz  (Al6)

which prove Eqs. (7) and (9), respectively.
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