The Electrification of New Mexico Thunderstorms

1. Relationship Between Precipitation Development and the Onset of Electrification (1989)

PAPER AUTHORS: J.E. DYE, W.P. WINN, J.J. JONES, D.W. BREED

PRESENTER: MARY CWIKLA

Introduction

https://tau0.wordpress.com/tag/lightning/

	dBZ	Rain Rate (in/hr)
	65	16+
	60	8.00
	55	4.00
	52	2.50
	47	1.25
dBZ = decibel	41	0.50
relative to Z	36	0.25
reflectivity)	30	0.10
· •···• · ,	20	Trace
	< 20	No rain

http://oceanservice.noaa.gov/education/yos/resource/JetStream/doppler/baserefl.htm

Background

- Workman and Reynolds 12 clouds exhibited a radar return followed by a developing electric field with initial discharge occurring 10 minutes after radar return.
- Reynolds and Brook Precipitation is necessary but not sufficient condition for electrification. Precipitation preceded onset of electrification as much as 30 minutes beforehand.

• Moore et al. – Radar reflectivity always less than 33 dBz before onset of electrification.

GOAL: Investigate onset of electrification in relation to the development of

Instrumentation Aircraft Electric Field Measurements

Explorer Sailplane, operated by NCAR

http://soaringcafe.com/2013/05/explorers-sailplane-the-four-lives-of-two-nine-juliet//

Special Purpose Test Vehicle for Atmospheric Research (SPTVAR), operated by NMT

http://www.antennadesignconsultant.com/blog/

Instrumentation Surface Electric Field Measurements

Instrumentation Radar Reflectivity

NCAR Doppler 5-cm-wavelength radars

• CP-3

• CP-4

NOAA 3-cm-wavelength radars

• C

• D

http://www.windows2universe.org/earth/Atmosphere/weather_instruments.html

Instrumentation Rawinsondes and Time-Lapse Photograph

Rawinsondes

- Radiosonde that measures winds, pressure, temperature and humidity.
- Released daily at 0730 MST from the Socorro airport.

Camera

- Photos taken every 20 seconds from Socorro.
- 16-mm time-lapse camera system.

http://roswellproof.homestead.com/balloon_use.html

Storms

Observational Period: July 14 through August 24, 1984

Number of storms:

20 on 18 different days

Specific Cases August 3, 1984: Moderate with Delayed Electrification

Specific Cases August 3, 1984: Moderate with Delayed Electrification

Specific Cases July 31, 1984: Electrically Intense

Specific Cases July 31, 1984: Electrically Intense

Specific Cases August 1, 1984: Electrified Cloud without Lightning

Specific Cases August 1, 1984: Electrified Cloud without Lightning

Specific Cases July 23, 1984: Weak Storm with Little or No Electrification

Specific Cases July 23, 1984: Weak Storm with Little or No Electrification

	Time of IE ^a	Time of Precipitation before IE, min.			Maximum	Observed	L	ghtning Total	- Radar Top, km		
		10 dB _Z	40 dB _Z	Z_6 at IE	Z_6	E _{max} , kV/m ^a	First	Number	at IE	Maximum	Comments
July 19 (201)	none	_	_	_	15	~0.2	none		_	8	No electrification
July 20 (202)	<1202 (SFC) ^b	>32	14	240	50	55 (SV)	1204	~50	~11.5	13	IE with top growth
July 23 (205)	1041 (SV)¢	27	2	~36	~40	3 (SV)	none		~7.5	~9	Very weak electrification
July 27 (209)	1132 (SV)¢	62	11	>40	46	95 (SV)	1149	>3d	>8	~10.5	IE with slow growth
July 29 (209)	0958 (SP)	>15	13	50	52	36 (SV)	none		9	9	IE with slow growth
July 31 (213)	1127 (SP.SFC)	>62	2	43	50	80 (SV)	1129	>100	10.5	14	IE with growth
Aug. 1 (214)	~1050 (SV)	27	9	41	46	60 (SV)	none		9.5	9.5	IE at maximum top
Aug. 2 (215)N	1048 (SFC)	>20	6	45	52	17 (SV)	1053	~11	~9	13.5	IE with growth
Aug. 2 (215)S	~1131 (SP)	~25	~10	51	52	~80 (SP)	7	3?	10.5	13.5	IE with growth
Aug. 3 (216)	1242 (SP)	26	12	40	43	40 (SP,SV)	1245	6	9.5	12	IE with growth
Aug. 6 (219)	none	—	_		12	<0.2	none		_	~8	No electrification
Aug. 7 (220)A	between 1218 and 1226 (SV)	>23	>8	~47	50	65 (SV)	≈1225	?	~10	12	IE with growth
Aug. 7 (220)B	1259 (SP)	23	1	44	50	>65 (SV)	<1306	?	10.5	11.5	IE with growth
Aug. 12 (225)	1118 (SFC)	>16"	>10"	42	51	55 (SV)	1134	~10	>10.5	~12.5	IE with weak growth
Aug. 13 (226)	0907 (SFC)	75	7	~55	61	70 (SV)	0908	18	~11	12	IE with growth
Aug. 14 (227)	1136 (SP,SFC)	• 16	4	44	45	15 (SP)	none		9	9.5	IE near relative maximum
Aug. 15 (228)	1036 (SFC, SV, SP)	26	3	38	43	28 (SV)	1059	6	10	11	IE at maximum top
Aug. 19	1017 (SV)	>23	6	44	46	60 (SV)	1044	~10	>7.5	?	uncertain
Aug. 20 (233)	1136 (SFC,SV)	24	6	47	55	40 (SV)	1140	~50	12.5	14	IE with growth
Aug. 23 (236)	~1220 (SV)	25	~6	52	53	80 (SV)	1220	30	11	12	IE with growth

TABLE 2. Summary of 1984 Initial Electrification Cases

Abbreviations are as follows: IE, initial electrification (see text); Z6, reflectivity at 6 km altitude; SFC, surface measurements; SV, SPTVAR measurements; and SP, sailplane measurements.

^a Source is indicated in parentheses. ^b Sensitivity reduced by distance from LL.

^c Too far from LL for good surface data. ^d Based on SPTVAR coverage, some could be missed.

^e Radar coverage started after precipitation.
^f Radar coverage started 3 min after IE; z₆ was already 55.

Comparisons to Previous Work

 Reynolds and Brook – Confirmed that electrification follows precipitation and in most cases, electrification is associated with vertical growth.

- Moore et al. Reported electric fields of 1 to 2 kV m⁻¹ before detectable precipitation, reflectivity was never more than 33 dBZ.
 - ^o This study showed precipitation before 1 kV m⁻¹ and radar reflectivity over 33 dBZ at initial electrification in some storm cases.
 - OBig difference is surface measurements versus measurements made below and inside the cloud.

Conclusions

 All 20 storms showed the development of precipitation leading to the onset of electrification by at least 15 minutes.

• The radar top had to exceed about 8 km for the cloud to become electrified and had to exceed 9.5 for lightning to be produced.

• Electrification is associated with vertical growth.

• Reflectivity is not a reliable indication of electrification by itself.