Physics 535 - Lécture 34 Physics of Lightning

 Numerical Solution of Streamers

Langmuir Laboratory for̂Atmospheric Physics New Mexico Institute of Mining and Technology

Streamers (Ch. 3.1-3.2)
Gas is at ambient temperature but electrons are at $>1 \mathrm{eV}$. Ionization is by electron impact. Electrical conductivity is low except at the streamer tip. E-field is very high. "Equilibrium" in streamer frame only, contingent on streamer growing at 0.01c.

Streamer head in air, (dimensionless)

Fiaure3 2
R. Sonnenfeld -- As of: 14-Apr-2016

Figure3 2
R. Sonnenfeld -- As of: 13-Apr-2016

Streamer Derivation I

$[3.3] \nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \rightarrow \frac{2 E}{x}+\frac{d E}{d x}=\frac{e}{\epsilon_{0}}\left(n_{+}-n_{e}\right)$
[3.6] $j_{t}=e n_{e} v_{e}+e\left(n_{+}-n_{e}\right) v_{s}=0 \rightarrow\left(n_{+}-n_{e}\right)=\frac{-n_{e} v_{e}}{v_{s}}$
[3.9] $\mathrm{v}_{\mathrm{s}}=\frac{\mathrm{e} \mu_{\mathrm{e}} \mathrm{n}_{\mathrm{m}} \mathrm{r}_{\mathrm{m}}}{2 \epsilon_{0}} \ldots+$ algebra \ldots
$\frac{d F}{d Y}+2 \frac{F}{Y}=-2 N F$

Streamer Derivation II

$[3.5]-\frac{d}{d x} n_{e}\left(v_{s}-v_{e}\right)=v_{i} n_{e} \rightarrow n_{e} \frac{d v_{e}}{d x}+v_{e} \frac{d n_{e}}{d x}-v_{s} \frac{d n_{e}}{d x}=v_{i} n_{e}$
[2.1] $\mathrm{v}_{\mathrm{e}}=-\mu_{\mathrm{e}} \mathrm{E}$
[Bonus] $v_{i}=v_{n}\left(\frac{E}{E_{m}}\right)^{k} \ldots+$ algebra \ldots

$$
\mathrm{dN}=\frac{-\mathrm{dY}}{(\mathrm{~F}+\mathrm{B})}\left[\mathrm{N} \frac{\mathrm{dF}}{\mathrm{dY}}+\mathrm{AN}|\mathrm{~F}|^{\mathrm{k}}\right]
$$

Dimensionless Equations

$$
\begin{array}{ll}
\frac{d F}{d Y}+2 \frac{F}{Y}=-2 N F & F \stackrel{\text { def }}{=} \frac{E}{E_{m}} \\
-(F+B) \frac{d N}{d Y}=N \frac{d F}{d Y}+A N|F|^{k} & N \stackrel{\text { def }}{=} \frac{n_{e}}{n_{m}} \\
A=\frac{v_{m} r_{m}}{\mu_{e} E_{m}} \quad B=\frac{v_{s}}{\mu_{e} E_{m}} & Y \stackrel{\text { def }}{=} \frac{x}{r_{m}} \\
k \simeq 2.5 &
\end{array}
$$

Solve for dF and dN

$$
\begin{aligned}
& {[1] d F=\left(2 F N-2 \frac{F}{Y}\right) d Y} \\
& {[2] d N=\frac{-d Y}{(F+B)}\left[N \frac{d F}{d Y}+A N|F|^{k}\right] \underset{N}{ } \frac{\mathrm{def}}{E_{m}} \frac{E}{E_{m}} \frac{n_{e}}{n_{m}}}
\end{aligned}
$$

Boundary conditions:

At $\mathrm{Y}=1, \mathrm{~F}$ and N are both=1

$$
Y \stackrel{\text { def }}{=} \frac{X}{r_{m}}
$$

Numerical Solution method

[1] $\mathrm{dF}=\left(2 \mathrm{FN}-2 \frac{\mathrm{~F}}{\mathrm{Y}}\right) \mathrm{dY}$
[2] $\mathrm{dN}=\frac{-\mathrm{dY}}{(\mathrm{F}+\mathrm{B})}\left[\mathrm{N} \frac{\mathrm{dF}}{\mathrm{dY}}+\mathrm{AN}|\mathrm{F}|^{\mathrm{k}}\right]$
Create an array of 500 Y values (with $1<\mathrm{Y}<2$) $Y(1)=1, F(1)=1$ and $N(1)$ is also 1 .
Use eqn [1] to calculate dF , and thus $\mathrm{F}(2)$ Use eqn [2] to calculate dN and thus $\mathrm{N}(2)$. $\mathrm{dF} / \mathrm{dY}(1)$ is also obvious.
Continue generating new F's and N's.
Create another array of Y's $(0<\mathrm{Y}<1)$. Repeat the process going backwards.

Practice Plot, A=10, B=1

Streamer head

