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To demonstrate that this goes to δ3(r) as � → 0:

(a) Show that D(r, �) = (3�2/4π)(r 2 + �2)−5/2.

(b) Check that D(0, �) → ∞, as � → 0.

(c) Check that D(r, �) → 0, as � → 0, for all r �= 0.

(d) Check that the integral of D(r, �) over all space is 1.
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2 Electrostatics

2.1 THE ELECTRIC FIELD

2.1.1 Introduction

The fundamental problem electrodynamics hopes to solve is this (Fig. 2.1): We
have some electric charges, q1, q2, q3, . . . (call them source charges); what force
do they exert on another charge, Q (call it the test charge)? The positions of the
source charges are given (as functions of time); the trajectory of the test particle
is to be calculated. In general, both the source charges and the test charge are in
motion.

The solution to this problem is facilitated by the principle of superposition,
which states that the interaction between any two charges is completely unaffected
by the presence of others. This means that to determine the force on Q, we can first
compute the force F1, due to q1 alone (ignoring all the others); then we compute
the force F2, due to q2 alone; and so on. Finally, we take the vector sum of all
these individual forces: F = F1 + F2 + F3 + . . . Thus, if we can find the force
on Q due to a single source charge q, we are, in principle, done (the rest is just a
question of repeating the same operation over and over, and adding it all up).1

Well, at first sight this looks very easy: Why don’t I just write down the formula
for the force on Q due to q, and be done with it? I could, and in Chapter 10 I
shall, but you would be shocked to see it at this stage, for not only does the force
on Q depend on the separation distance r between the charges (Fig. 2.2), it also
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1The principle of superposition may seem “obvious” to you, but it did not have to be so simple: if
the electromagnetic force were proportional to the square of the total source charge, for instance, the
principle of superposition would not hold, since (q1 + q2)

2 �= q2
1 + q2

2 (there would be “cross terms”
to consider). Superposition is not a logical necessity, but an experimental fact.
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60 Chapter 2 Electrostatics

depends on both their velocities and on the acceleration of q. Moreover, it is not
the position, velocity, and acceleration of q right now that matter: electromagnetic
“news” travels at the speed of light, so what concerns Q is the position, velocity,
and acceleration q had at some earlier time, when the message left.

Therefore, in spite of the fact that the basic question (“What is the force on
Q due to q?”) is easy to state, it does not pay to confront it head on; rather, we
shall go at it by stages. In the meantime, the theory we develop will allow for the
solution of more subtle electromagnetic problems that do not present themselves
in quite this simple format. To begin with, we shall consider the special case
of electrostatics in which all the source charges are stationary (though the test
charge may be moving).

2.1.2 Coulomb’s Law

What is the force on a test charge Q due to a single point charge q, that is at rest a
distance r away? The answer (based on experiments) is given by Coulomb’s law:

F = 1

4π�0

q Q

r2 r̂. (2.1)

The constant �0 is called (ludicrously) the permittivity of free space. In SI units,
where force is in newtons (N), distance in meters (m), and charge in coulombs (C),

�0 = 8.85 × 10−12 C2

N · m2
.

In words, the force is proportional to the product of the charges and inversely
proportional to the square of the separation distance. As always (Sect. 1.1.4), r is
the separation vector from r� (the location of q) to r (the location of Q):

r = r − r�; (2.2)

r is its magnitude, and r̂ is its direction. The force points along the line from q to
Q; it is repulsive if q and Q have the same sign, and attractive if their signs are
opposite.

Coulomb’s law and the principle of superposition constitute the physical input
for electrostatics—the rest, except for some special properties of matter, is math-
ematical elaboration of these fundamental rules.

Problem 2.1

(a) Twelve equal charges, q, are situated at the corners of a regular 12-sided poly-
gon (for instance, one on each numeral of a clock face). What is the net force
on a test charge Q at the center?

(b) Suppose one of the 12 q’s is removed (the one at “6 o’clock”). What is the force
on Q? Explain your reasoning carefully.
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(c) Now 13 equal charges, q, are placed at the corners of a regular 13-sided
polygon. What is the force on a test charge Q at the center?

(d) If one of the 13 q’s is removed, what is the force on Q? Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges q1, q2, . . . , qn , at distances r1, r2, . . . , rn from
Q, the total force on Q is evidently

F = F1 + F2 + . . . = 1

4π�0

�
q1 Q

r21
r̂1 + q2 Q

r22
r̂2 + . . .

�

= Q

4π�0

�
q1

r21
r̂1 + q2

r22
r̂2 + q3

r23
r̂3 + . . .

�
,

or

F = QE, (2.3)

where

E(r) ≡ 1

4π�0

n�

i=1

qi

r2i
r̂i . (2.4)

E is called the electric field of the source charges. Notice that it is a function of
position (r), because the separation vectors ri depend on the location of the field
point P (Fig. 2.3). But it makes no reference to the test charge Q. The electric
field is a vector quantity that varies from point to point and is determined by the
configuration of source charges; physically, E(r) is the force per unit charge that
would be exerted on a test charge, if you were to place one at P .

What exactly is an electric field? I have deliberately begun with what you might
call the “minimal” interpretation of E, as an intermediate step in the calculation
of electric forces. But I encourage you to think of the field as a “real” physical
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entity, filling the space around electric charges. Maxwell himself came to believe
that electric and magnetic fields are stresses and strains in an invisible primordial
jellylike “ether.” Special relativity has forced us to abandon the notion of ether,
and with it Maxwell’s mechanical interpretation of electromagnetic fields. (It is
even possible, though cumbersome, to formulate classical electrodynamics as an
“action-at-a-distance” theory, and dispense with the field concept altogether.) I
can’t tell you, then, what a field is—only how to calculate it and what it can do
for you once you’ve got it.

Example 2.1. Find the electric field a distance z above the midpoint between
two equal charges (q), a distance d apart (Fig. 2.4a).

Solution
Let E1 be the field of the left charge alone, and E2 that of the right charge alone
(Fig. 2.4b). Adding them (vectorially), the horizontal components cancel and the
vertical components conspire:

Ez = 2
1

4π�0

q

r2 cos θ .

Here r = �
z2 + (d/2)2 and cos θ = z/r, so

E = 1

4π�0

2qz
�
z2 + (d/2)2

�3/2 ẑ.

Check: When z � d you’re so far away that it just looks like a single charge
2q, so the field should reduce to E = 1

4π�0

2q
z2 ẑ. And it does (just set d → 0 in the

formula).
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Problem 2.2 Find the electric field (magnitude and direction) a distance z above
the midpoint between equal and opposite charges (±q), a distance d apart (same as
Example 2.1, except that the charge at x = +d/2 is −q).
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2.1.4 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4) assumes that the source of the field
is a collection of discrete point charges qi . If, instead, the charge is distributed
continuously over some region, the sum becomes an integral (Fig. 2.5a):

E(r) = 1

4π�0

�
1

r2 r̂ dq. (2.5)

If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length
λ, then dq = λ dl � (where dl � is an element of length along the line); if the
charge is smeared out over a surface (Fig. 2.5c), with charge-per-unit-area σ , then
dq = σ da� (where da� is an element of area on the surface); and if the charge fills
a volume (Fig. 2.5d), with charge-per-unit-volume ρ, then dq = ρ dτ � (where dτ �
is an element of volume):

dq → λ dl � ∼ σ da� ∼ ρ dτ �.

Thus the electric field of a line charge is

E(r) = 1

4π�0

�
λ(r�)
r2 r̂ dl �; (2.6)

for a surface charge,

E(r) = 1

4π�0

�
σ (r�)
r2 r̂ da�; (2.7)

and for a volume charge,

E(r) = 1

4π�0

�
ρ(r�)
r2 r̂ dτ �. (2.8)
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Equation 2.8 itself is often referred to as “Coulomb’s law,” because it is such
a short step from the original (2.1), and because a volume charge is in a sense the
most general and realistic case. Please note carefully the meaning of r in these
formulas. Originally, in Eq. 2.4, ri stood for the vector from the source charge
qi to the field point r. Correspondingly, in Eqs. 2.5–2.8, r is the vector from dq
(therefore from dl �, da�, or dτ �) to the field point r.2

Example 2.2. Find the electric field a distance z above the midpoint of a straight
line segment of length 2L that carries a uniform line charge λ (Fig. 2.6).

x

dx

r
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z

FIGURE 2.6

Solution
The simplest method is to chop the line into symmetrically placed pairs (at ±x),
quote the result of Ex. 2.1 (with d/2 → x , q → λ dx), and integrate (x : 0 → L).
But here’s a more general approach:3

r = z ẑ, r� = x x̂, dl � = dx;
r = r − r� = z ẑ − x x̂, r =

�
z2 + x2, r̂ = r

r = z ẑ − x x̂√
z2 + x2

.

E = 1

4π�0

� L

−L

λ

z2 + x2

z ẑ − x x̂√
z2 + x2

dx

= λ

4π�0

	
z ẑ

� L

−L

1

(z2 + x2)3/2
dx − x̂

� L

−L

x

(z2 + x2)3/2
dx




= λ

4π�0

�
z ẑ

�
x

z2
√

z2 + x2

�����
L

−L

− x̂
�

− 1√
z2 + x2

�����
L

−L




= 1

4π�0

2λL

z
√

z2 + L2
ẑ.

2Warning: The unit vector r̂ is not constant; its direction depends on the source point r�, and hence
it cannot be taken outside the integrals (Eqs. 2.5–2.8). In practice, you must work with Cartesian
components (x̂, ŷ, ẑ are constant, and do come out), even if you use curvilinear coordinates to perform
the integration.
3Ordinarily I’ll put a prime on the source coordinates, but where no confusion can arise I’ll remove
the prime to simplify the notation.
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For points far from the line (z � L),

E ∼= 1

4π�0

2λL

z2
.

This makes sense: From far away the line looks like a point charge q = 2λL . In
the limit L → ∞, on the other hand, we obtain the field of an infinite straight
wire:

E = 1

4π�0

2λ

z
. (2.9)

Problem 2.3 Find the electric field a distance z above one end of a straight line
segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your
formula is consistent with what you would expect for the case z � L .
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Problem 2.4 Find the electric field a distance z above the center of a square loop
(side a) carrying uniform line charge λ (Fig. 2.8). [Hint: Use the result of Ex. 2.2.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop
of radius r (Fig. 2.9) that carries a uniform line charge λ.

Problem 2.6 Find the electric field a distance z above the center of a flat circular
disk of radius R (Fig. 2.10) that carries a uniform surface charge σ . What does your
formula give in the limit R → ∞? Also check the case z � R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface!
of radius R (Fig. 2.11) that carries a uniform charge density σ . Treat the case z < R
(inside) as well as z > R (outside). Express your answers in terms of the total charge
q on the sphere. [Hint: Use the law of cosines to write r in terms of R and θ . Be
sure to take the positive square root:

√
R2 + z2 − 2Rz = (R − z) if R > z, but it’s

(z − R) if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a solid
sphere of radius R that carries a uniform volume charge density ρ. Express your
answers in terms of the total charge of the sphere, q. Draw a graph of |E| as a
function of the distance from the center.
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2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the
force on a charge Q placed in this field will be. Unfortunately, as you may have
discovered in working Prob. 2.7, the integrals involved in computing E can be
formidable, even for reasonably simple charge distributions. Much of the rest of
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these
integrals. It all begins with the divergence and curl of E. I shall calculate the
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you
a more qualitative, and perhaps more illuminating, intuitive approach.

Let’s begin with the simplest possible case: a single point charge q, situated at
the origin:

E(r) = 1

4π�0

q

r2
r̂. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in
Fig. 2.12a. Because the field falls off like 1/r2, the vectors get shorter as you go
farther away from the origin; they always point radially outward. But there is a

(a)

E

(b)

E

FIGURE 2.12



2.2 Divergence and Curl of Electrostatic Fields 67

nicer way to represent this field, and that’s to connect up the arrows, to form field
lines (Fig. 2.12b). You might think that I have thereby thrown away information
about the strength of the field, which was contained in the length of the arrows.
But actually I have not. The magnitude of the field is indicated by the density of
the field lines: it’s strong near the center where the field lines are close together,
and weak farther out, where they are relatively far apart.

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional
surface, for the density of lines passing through a circle of radius r is the total
number divided by the circumference (n/2πr), which goes like (1/r), not (1/r2).
But if you imagine the model in three dimensions (a pincushion with needles
sticking out in all directions), then the density of lines is the total number divided
by the area of the sphere (n/4πr2), which does go like (1/r2).

Such diagrams are also convenient for representing more complicated fields.
Of course, the number of lines you draw depends on how lazy you are (and how
sharp your pencil is), though you ought to include enough to get an accurate sense
of the field, and you must be consistent: If q gets 8 lines, then 2q deserves 16. And
you must space them fairly—they emanate from a point charge symmetrically in
all directions. Field lines begin on positive charges and end on negative ones;
they cannot simply terminate in midair,4 though they may extend out to infinity.
Moreover, field lines can never cross—at the intersection, the field would have
two different directions at once! With all this in mind, it is easy to sketch the field
of any simple configuration of point charges: Begin by drawing the lines in the
neighborhood of each charge, and then connect them up or extend them to infinity
(Figs. 2.13 and 2.14).

In this model, the flux of E through a surface S ,

	E ≡
�

S
E · da, (2.11)

+ −

Opposite charges

FIGURE 2.13

4If they did, the divergence of E would not be zero, and (as we shall soon see) that cannot happen in
empty space.
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+ +

Equal charges

FIGURE 2.14

is a measure of the “number of field lines” passing through S . I put this in quotes
because of course we can only draw a representative sample of the field lines—the
total number would be infinite. But for a given sampling rate the flux is propor-
tional to the number of lines drawn, because the field strength, remember, is pro-
portional to the density of field lines (the number per unit area), and hence E · da
is proportional to the number of lines passing through the infinitesimal area da.
(The dot product picks out the component of da along the direction of E, as indi-
cated in Fig. 2.15. It is the area in the plane perpendicular to E that we have in
mind when we say that the density of field lines is the number per unit area.)

This suggests that the flux through any closed surface is a measure of the
total charge inside. For the field lines that originate on a positive charge must
either pass out through the surface or else terminate on a negative charge inside
(Fig. 2.16a). On the other hand, a charge outside the surface will contribute
nothing to the total flux, since its field lines pass in one side and out the other
(Fig. 2.16b). This is the essence of Gauss’s law. Now let’s make it quantitative.

In the case of a point charge q at the origin, the flux of E through a spherical
surface of radius r is

�
E · da =

�
1

4π�0

� q

r2
r̂
�

· (r2 sin θ dθ dφ r̂) = 1

�0
q. (2.12)

da

E

FIGURE 2.15
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Notice that the radius of the sphere cancels out, for while the surface area goes
up as r2, the field goes down as 1/r2, so the product is constant. In terms of the
field-line picture, this makes good sense, since the same number of field lines pass
through any sphere centered at the origin, regardless of its size. In fact, it didn’t
have to be a sphere—any closed surface, whatever its shape, would be pierced by
the same number of field lines. Evidently the flux through any surface enclosing
the charge is q/�0.

Now suppose that instead of a single charge at the origin, we have a bunch of
charges scattered about. According to the principle of superposition, the total field
is the (vector) sum of all the individual fields:

E =
n�

i=1

Ei .

The flux through a surface that encloses them all is
�

E · da =
n�

i=1

��
Ei · da

�
=

n�

i=1

�
1

�0
qi

�

For any closed surface, then,

�
E · da = 1

�0
Qenc, (2.13)

where Qenc is the total charge enclosed within the surface. This is the quantita-
tive statement of Gauss’s law. Although it contains no information that was not
already present in Coulomb’s law plus the principle of superposition, it is of al-
most magical power, as you will see in Sect. 2.2.3. Notice that it all hinges on
the 1/r2 character of Coulomb’s law; without that the crucial cancellation of the
r ’s in Eq. 2.12 would not take place, and the total flux of E would depend on the
surface chosen, not merely on the total charge enclosed. Other 1/r2 forces (I am
thinking particularly of Newton’s law of universal gravitation) will obey “Gauss’s
laws” of their own, and the applications we develop here carry over directly.
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As it stands, Gauss’s law is an integral equation, but we can easily turn it into
a differential one, by applying the divergence theorem:

�

S

E · da =
�

V

(∇ · E) dτ.

Rewriting Qenc in terms of the charge density ρ, we have

Qenc =
�

V

ρ dτ.

So Gauss’s law becomes
�

V

(∇ · E) dτ =
�

V

�
ρ

�0

�
dτ.

And since this holds for any volume, the integrands must be equal:

∇ · E = 1

�0
ρ. (2.14)

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss’s law in differen-
tial form. The differential version is tidier, but the integral form has the advantage
in that it accommodates point, line, and surface charges more naturally.

Problem 2.9 Suppose the electric field in some region is found to be E = kr 3r̂, in
spherical coordinates (k is some constant).

(a) Find the charge density ρ.

(b) Find the total charge contained in a sphere of radius R, centered at the origin.
(Do it two different ways.)

Problem 2.10 A charge q sits at the back corner of a cube, as shown in Fig. 2.17.
What is the flux of E through the shaded side?

q

FIGURE 2.17
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2.2.2 The Divergence of E

Let’s go back, now, and calculate the divergence of E directly from Eq. 2.8:

E(r) = 1

4π�0

�

all space

r̂
r2 ρ(r�) dτ �. (2.15)

(Originally the integration was over the volume occupied by the charge, but I may
as well extend it to all space, since ρ = 0 in the exterior region anyway.) Noting
that the r-dependence is contained in r = r − r�, we have

∇ · E = 1

4π�0

�
∇ ·

� r̂
r2

�
ρ(r�) dτ �.

This is precisely the divergence we calculated in Eq. 1.100:

∇ ·
� r̂
r2

�
= 4πδ3(r).

Thus

∇ · E = 1

4π�0

�
4πδ3(r − r�)ρ(r�) dτ � = 1

�0
ρ(r), (2.16)

which is Gauss’s law in differential form (Eq. 2.14). To recover the integral form
(Eq. 2.13), we run the previous argument in reverse—integrate over a volume and
apply the divergence theorem:

�

V

∇ · E dτ =
�

S

E · da = 1

�0

�

V

ρ dτ = 1

�0
Qenc.

2.2.3 Applications of Gauss’s Law

I must interrupt the theoretical development at this point to show you the
extraordinary power of Gauss’s law, in integral form. When symmetry permits,
it affords by far the quickest and easiest way of computing electric fields. I’ll
illustrate the method with a series of examples.

Example 2.3. Find the field outside a uniformly charged solid sphere of radius
R and total charge q.

Solution
Imagine a spherical surface at radius r > R (Fig. 2.18); this is called a Gaussian
surface in the trade. Gauss’s law says that

�

S

E · da = 1

�0
Qenc,
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and in this case Qenc = q. At first glance this doesn’t seem to get us very far,
because the quantity we want (E) is buried inside the surface integral. Luckily,
symmetry allows us to extract E from under the integral sign: E certainly points
radially outward,5 as does da, so we can drop the dot product,

�

S

E · da =
�

S

|E| da,

R

r
Gaussian
surface

FIGURE 2.18

and the magnitude of E is constant over the Gaussian surface, so it comes outside
the integral: �

S

|E| da = |E|
�

S

da = |E| 4πr2.

Thus
|E| 4πr2 = 1

�0
q,

or
E = 1

4π�0

q

r2
r̂.

Notice a remarkable feature of this result: The field outside the sphere is exactly
the same as it would have been if all the charge had been concentrated at the
center.

Gauss’s law is always true, but it is not always useful. If ρ had not been uniform
(or, at any rate, not spherically symmetrical), or if I had chosen some other shape
for my Gaussian surface, it would still have been true that the flux of E is q/�0, but
E would not have pointed in the same direction as da, and its magnitude would
not have been constant over the surface, and without that I cannot get |E| outside

5If you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the
“equator.” But the orientation of the equator is perfectly arbitrary—nothing is spinning here, so there
is no natural “north-south” axis—any argument purporting to show that E points east could just as
well be used to show it points west, or north, or any other direction. The only unique direction on a
sphere is radial.
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Gaussian surface

FIGURE 2.19

Gaussian
pillbox

FIGURE 2.20

of the integral. Symmetry is crucial to this application of Gauss’s law. As far as I
know, there are only three kinds of symmetry that work:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
(Fig. 2.19).

3. Plane symmetry. Use a Gaussian “pillbox” that straddles the surface
(Fig. 2.20).

Although (2) and (3) technically require infinitely long cylinders, and planes ex-
tending to infinity, we shall often use them to get approximate answers for “long”
cylinders or “large” planes, at points far from the edges.

Example 2.4. A long cylinder (Fig. 2.21) carries a charge density that is propor-
tional to the distance from the axis: ρ = ks, for some constant k. Find the electric
field inside this cylinder.

Solution
Draw a Gaussian cylinder of length l and radius s. For this surface, Gauss’s law
states: �

S

E · da = 1

�0
Qenc.

The enclosed charge is

Qenc =
�

ρ dτ =
�

(ks �)(s � ds � dφ dz) = 2πkl
� s

0
s �2 ds � = 2

3πkls3.

E

s

Gaussian
surface

l

E

FIGURE 2.21
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(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and
integrated φ from 0 to 2π , dz from 0 to l. I put a prime on the integration variable
s �, to distinguish it from the radius s of the Gaussian surface.)

Now, symmetry dictates that E must point radially outward, so for the curved
portion of the Gaussian cylinder we have:�

E · da =
�

|E| da = |E|
�

da = |E| 2πsl,

while the two ends contribute nothing (here E is perpendicular to da). Thus,

|E| 2πsl = 1

�0

2

3
πkls3,

or, finally,

E = 1

3�0
ks2ŝ.

Example 2.5. An infinite plane carries a uniform surface charge σ . Find its
electric field.

Solution
Draw a “Gaussian pillbox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:�

E · da = 1

�0
Qenc.

In this case, Qenc = σ A, where A is the area of the lid of the pillbox. By symme-
try, E points away from the plane (upward for points above, downward for points
below). So the top and bottom surfaces yield

�
E · da = 2A|E|,

whereas the sides contribute nothing. Thus

2A |E| = 1

�0
σ A,

E

E

A

FIGURE 2.22
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or
E = σ

2�0
n̂, (2.17)

where n̂ is a unit vector pointing away from the surface. In Prob. 2.6, you obtained
this same result by a much more laborious method.

It seems surprising, at first, that the field of an infinite plane is independent of
how far away you are. What about the 1/r2 in Coulomb’s law? The point is that as
you move farther and farther away from the plane, more and more charge comes
into your “field of view” (a cone shape extending out from your eye), and this
compensates for the diminishing influence of any particular piece. The electric
field of a sphere falls off like 1/r2; the electric field of an infinite line falls off like
1/r ; and the electric field of an infinite plane does not fall off at all (you cannot
escape from an infinite plane).

Although the direct use of Gauss’s law to compute electric fields is limited to
cases of spherical, cylindrical, and planar symmetry, we can put together combi-
nations of objects possessing such symmetry, even though the arrangement as a
whole is not symmetrical. For example, invoking the principle of superposition,
we could find the field in the vicinity of two uniformly charged parallel cylinders,
or a sphere near an infinite charged plane.

Example 2.6. Two infinite parallel planes carry equal but opposite uniform
charge densities ±σ (Fig. 2.23). Find the field in each of the three regions: (i)
to the left of both, (ii) between them, (iii) to the right of both.

Solution
The left plate produces a field (1/2�0)σ , which points away from it (Fig. 2.24)—
to the left in region (i) and to the right in regions (ii) and (iii). The right plate,
being negatively charged, produces a field (1/2�0)σ , which points toward it—to
the right in regions (i) and (ii) and to the left in region (iii). The two fields cancel
in regions (i) and (iii); they conspire in region (ii). Conclusion: The field between
the plates is σ/�0, and points to the right; elsewhere it is zero.

(i) (ii) (iii)

+σ −σ

FIGURE 2.23

(i) (ii) (iii)

+σ −σ

E− E− E−

E+ E+ E+

FIGURE 2.24
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Problem 2.11 Use Gauss’s law to find the electric field inside and outside a spherical
shell of radius R that carries a uniform surface charge density σ . Compare your
answer to Prob. 2.7.

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged
solid sphere (charge density ρ). Compare your answer to Prob. 2.8.

Problem 2.13 Find the electric field a distance s from an infinitely long straight
wire that carries a uniform line charge λ. Compare Eq. 2.9.

Problem 2.14 Find the electric field inside a sphere that carries a charge density pro-
portional to the distance from the origin, ρ = kr , for some constant k. [Hint: This
charge density is not uniform, and you must integrate to get the enclosed charge.]

Problem 2.15 A thick spherical shell carries charge density

ρ = k

r 2
(a ≤ r ≤ b)

(Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii) a < r < b, (iii)
r > b. Plot |E| as a function of r , for the case b = 2a.

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge
density ρ on the inner cylinder (radius a), and a uniform surface charge density on
the outer cylindrical shell (radius b). This surface charge is negative and is of just
the right magnitude that the cable as a whole is electrically neutral. Find the electric
field in each of the three regions: (i) inside the inner cylinder (s < a), (ii) between
the cylinders (a < s < b), (iii) outside the cable (s > b). Plot |E| as a function of s.

a

b

FIGURE 2.25

a
b

+

−

FIGURE 2.26

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume
charge density ρ (Fig. 2.27). Find the electric field, as a function of y, where y = 0
at the center. Plot E versus y, calling E positive when it points in the +y direction
and negative when it points in the −y direction.

Problem 2.18 Two spheres, each of radius R and carrying uniform volume•
charge densities +ρ and −ρ, respectively, are placed so that they partially overlap
(Fig. 2.28). Call the vector from the positive center to the negative center d. Show
that the field in the region of overlap is constant, and find its value. [Hint: Use the
answer to Prob. 2.12.]
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2d

x

y

z

FIGURE 2.27

d

+

−

FIGURE 2.28

2.2.4 The Curl of E

I’ll calculate the curl of E, as I did the divergence in Sect. 2.2.1, by studying first
the simplest possible configuration: a point charge at the origin. In this case

E = 1

4π�0

q

r2
r̂.

Now, a glance at Fig. 2.12 should convince you that the curl of this field has to
be zero, but I suppose we ought to come up with something a little more rigorous
than that. What if we calculate the line integral of this field from some point a to
some other point b (Fig. 2.29):

� b

a
E · dl.

In spherical coordinates, dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂, so

E · dl = 1

4π�0

q

r2
dr.

z

x

q

rb

ra
y

b

a

FIGURE 2.29
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Therefore,

� b

a
E · dl = 1

4π�0

� b

a

q

r2
dr = −1

4π�0

q

r

����
rb

ra

= 1

4π�0

�
q

ra
− q

rb

�
, (2.18)

where ra is the distance from the origin to the point a and rb is the distance to b.
The integral around a closed path is evidently zero (for then ra = rb):

�
E · dl = 0, (2.19)

and hence, applying Stokes’ theorem,

∇ × E = 0. (2.20)

Now, I proved Eqs. 2.19 and 2.20 only for the field of a single point charge
at the origin, but these results make no reference to what is, after all, a perfectly
arbitrary choice of coordinates; they hold no matter where the charge is located.
Moreover, if we have many charges, the principle of superposition states that the
total field is a vector sum of their individual fields:

E = E1 + E2 + . . . ,

so

∇ × E = ∇ × (E1 + E2 + . . .) = (∇ × E1) + (∇ × E2) + . . . = 0.

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever.

Problem 2.19 Calculate ∇ × E directly from Eq. 2.8, by the method of Sect. 2.2.2.
Refer to Prob. 1.63 if you get stuck.

2.3 ELECTRIC POTENTIAL

2.3.1 Introduction to Potential

The electric field E is not just any old vector function. It is a very special kind of
vector function: one whose curl is zero. E = yx̂, for example, could not possibly
be an electrostatic field; no set of charges, regardless of their sizes and positions,
could ever produce such a field. We’re going to exploit this special property of
electric fields to reduce a vector problem (finding E) to a much simpler scalar
problem. The first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero
is equal to the gradient of some scalar. What I’m going to do now amounts to a
proof of that claim, in the context of electrostatics.


