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1 Vector Analysis

1.1 VECTOR ALGEBRA

1.1.1 Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have
gone a total of 7 miles, but you’re not 7 miles from where you set out—you’re
only 5. We need an arithmetic to describe quantities like this, which evidently do
not add in the ordinary way. The reason they don’t, of course, is that displace-
ments (straight line segments going from one point to another) have direction
as well as magnitude (length), and it is essential to take both into account when
you combine them. Such objects are called vectors: velocity, acceleration, force
and momentum are other examples. By contrast, quantities that have magnitude
but no direction are called scalars: examples include mass, charge, density, and
temperature.

I shall use boldface (A, B, and so on) for vectors and ordinary type for scalars.
The magnitude of a vector A is written |A| or, more simply, A. In diagrams, vec-
tors are denoted by arrows: the length of the arrow is proportional to the magni-
tude of the vector, and the arrowhead indicates its direction. Minus A (−A) is a
vector with the same magnitude as A but of opposite direction (Fig. 1.2). Note that
vectors have magnitude and direction but not location: a displacement of 4 miles
due north from Washington is represented by the same vector as a displacement 4
miles north from Baltimore (neglecting, of course, the curvature of the earth). On
a diagram, therefore, you can slide the arrow around at will, as long as you don’t
change its length or direction.

We define four vector operations: addition and three kinds of multiplication.
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(i) Addition of two vectors. Place the tail of B at the head of A; the sum,
A + B, is the vector from the tail of A to the head of B (Fig. 1.3). (This rule
generalizes the obvious procedure for combining two displacements.) Addition is
commutative:

A + B = B + A;
3 miles east followed by 4 miles north gets you to the same place as 4 miles north
followed by 3 miles east. Addition is also associative:

(A + B) + C = A + (B + C).

To subtract a vector, add its opposite (Fig. 1.4):

A − B = A + (−B).

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar
a multiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is
negative, the direction is reversed.) Scalar multiplication is distributive:

a(A + B) = aA + aB.

(iii) Dot product of two vectors. The dot product of two vectors is defined by

A · B ≡ AB cos θ, (1.1)

where θ is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A · B
is itself a scalar (hence the alternative name scalar product). The dot product is
commutative,

A · B = B · A,

and distributive,

A · (B + C) = A · B + A · C. (1.2)

Geometrically, A · B is the product of A times the projection of B along A (or
the product of B times the projection of A along B). If the two vectors are parallel,
then A · B = AB. In particular, for any vector A,

A · A = A2. (1.3)

If A and B are perpendicular, then A · B = 0.
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Example 1.1. Let C = A − B (Fig. 1.7), and calculate the dot product of C with
itself.

Solution

C · C = (A − B) · (A − B) = A · A − A · B − B · A + B · B,

or

C2 = A2 + B2 − 2AB cos θ.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is de-
fined by

A × B ≡ AB sin θ n̂, (1.4)

where n̂ is a unit vector (vector of magnitude 1) pointing perpendicular to the
plane of A and B. (I shall use a hat ( ˆ ) to denote unit vectors.) Of course, there
are two directions perpendicular to any plane: “in” and “out.” The ambiguity is
resolved by the right-hand rule: let your fingers point in the direction of the first
vector and curl around (via the smaller angle) toward the second; then your thumb
indicates the direction of n̂. (In Fig. 1.8, A × B points into the page; B × A points
out of the page.) Note that A × B is itself a vector (hence the alternative name
vector product). The cross product is distributive,

A × (B + C) = (A × B) + (A × C), (1.5)

but not commutative. In fact,

(B × A) = −(A × B). (1.6)
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Geometrically, |A × B| is the area of the parallelogram generated by A and B
(Fig. 1.8). If two vectors are parallel, their cross product is zero. In particular,

A × A = 0

for any vector A. (Here 0 is the zero vector, with magnitude 0.)

Problem 1.1 Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams,
show that the dot product and cross product are distributive,

a) when the three vectors are coplanar;

b) in the general case.!

Problem 1.2 Is the cross product associative?

(A × B) × C ?= A × (B × C).

If so, prove it; if not, provide a counterexample (the simpler the better).

1.1.2 Vector Algebra: Component Form

In the previous section, I defined the four vector operations (addition, scalar mul-
tiplication, dot product, and cross product) in “abstract” form—that is, without
reference to any particular coordinate system. In practice, it is often easier to set
up Cartesian coordinates x, y, z and work with vector components. Let x̂, ŷ, and
ẑ be unit vectors parallel to the x , y, and z axes, respectively (Fig. 1.9(a)). An
arbitrary vector A can be expanded in terms of these basis vectors (Fig. 1.9(b)):
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A = Ax x̂ + Ay ŷ + Az ẑ.

The numbers Ax , Ay , and Az , are the “components” of A; geometrically, they
are the projections of A along the three coordinate axes (Ax = A · x̂, Ay = A · ŷ,
Az = A · ẑ). We can now reformulate each of the four vector operations as a rule
for manipulating components:

A + B = (Ax x̂ + Ay ŷ + Az ẑ) + (Bx x̂ + By ŷ + Bz ẑ)

= (Ax + Bx )x̂ + (Ay + By)ŷ + (Az + Bz)ẑ. (1.7)

Rule (i): To add vectors, add like components.

aA = (a Ax )x̂ + (a Ay)ŷ + (a Az)ẑ. (1.8)

Rule (ii): To multiply by a scalar, multiply each component.

Because x̂, ŷ, and ẑ are mutually perpendicular unit vectors,

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1; x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0. (1.9)

Accordingly,

A · B = (Ax x̂ + Ay ŷ + Az ẑ) · (Bx x̂ + By ŷ + Bz ẑ)

= Ax Bx + Ay By + Az Bz . (1.10)

Rule (iii): To calculate the dot product, multiply like components, and add.
In particular,

A · A = A2
x + A2

y + A2
z ,

so

A =
√

A2
x + A2

y + A2
z . (1.11)

(This is, if you like, the three-dimensional generalization of the Pythagorean
theorem.)

Similarly,1

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0,

x̂ × ŷ = −ŷ × x̂ = ẑ,

ŷ × ẑ = −ẑ × ŷ = x̂,

ẑ × x̂ = −x̂ × ẑ = ŷ. (1.12)

1These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the right,
z-axis up, or any rotated version thereof). In a left-handed system (z-axis down), the signs would be
reversed: x̂ × ŷ = −ẑ, and so on. We shall use right-handed systems exclusively.
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Therefore,

A × B = (Ax x̂ + Ay ŷ + Az ẑ) × (Bx x̂ + By ŷ + Bz ẑ) (1.13)

= (Ay Bz − Az By)x̂ + (Az Bx − Ax Bz)ŷ + (Ax By − Ay Bx )ẑ.

This cumbersome expression can be written more neatly as a determinant:

A × B =
∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ . (1.14)

Rule (iv): To calculate the cross product, form the determinant whose first row
is x̂, ŷ, ẑ, whose second row is A (in component form), and whose third row is B.

Example 1.2. Find the angle between the face diagonals of a cube.

Solution
We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with
one corner at the origin. The face diagonals A and B are

A = 1 x̂ + 0 ŷ + 1 ẑ; B = 0 x̂ + 1 ŷ + 1 ẑ.

z

θ
A

B
(0, 0, 1)

y
(0, 1, 0)

x (1, 0, 0)

FIGURE 1.10

So, in component form,

A · B = 1 · 0 + 0 · 1 + 1 · 1 = 1.

On the other hand, in “abstract” form,

A · B = AB cos θ = √
2
√

2 cos θ = 2 cos θ.

Therefore,

cos θ = 1/2, or θ = 60◦.

Of course, you can get the answer more easily by drawing in a diagonal across
the top of the cube, completing the equilateral triangle. But in cases where the
geometry is not so simple, this device of comparing the abstract and component
forms of the dot product can be a very efficient means of finding angles.
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Problem 1.3 Find the angle between the body diagonals of a cube.

Problem 1.4 Use the cross product to find the components of the unit vector n̂
perpendicular to the shaded plane in Fig. 1.11.

1.1.3 Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed
with a third vector to form a triple product.

(i) Scalar triple product: A · (B × C). Geometrically, |A · (B × C)| is the
volume of the parallelepiped generated by A, B, and C, since |B × C| is the area
of the base, and |A cos θ | is the altitude (Fig. 1.12). Evidently,

A · (B × C) = B · (C × A) = C · (A × B), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is
preserved—in view of Eq. 1.6, the “nonalphabetical” triple products,

A · (C × B) = B · (A × C) = C · (B × A),

have the opposite sign. In component form,

A · (B × C) =
∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (1.16)

Note that the dot and cross can be interchanged:

A · (B × C) = (A × B) · C

(this follows immediately from Eq. 1.15); however, the placement of the parenthe-
ses is critical: (A · B) × C is a meaningless expression—you can’t make a cross
product from a scalar and a vector.
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(ii) Vector triple product: A × (B × C). The vector triple product can be
simplified by the so-called BAC-CAB rule:

A × (B × C) = B(A · C) − C(A · B). (1.17)

Notice that

(A × B) × C = −C × (A × B) = −A(B · C) + B(A · C)

is an entirely different vector (cross-products are not associative). All higher vec-
tor products can be similarly reduced, often by repeated application of Eq. 1.17,
so it is never necessary for an expression to contain more than one cross product
in any term. For instance,

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C);
A × [B × (C × D)] = B[A · (C × D)] − (A · B)(C × D). (1.18)

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component
form.

Problem 1.6 Prove that

[A × (B × C)] + [B × (C × A)] + [C × (A × B)] = 0.

Under what conditions does A × (B × C) = (A × B) × C?

1.1.4 Position, Displacement, and Separation Vectors

The location of a point in three dimensions can be described by listing its
Cartesian coordinates (x, y, z). The vector to that point from the origin (O)
is called the position vector (Fig. 1.13):

r ≡ x x̂ + y ŷ + z ẑ. (1.19)

r
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FIGURE 1.13
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FIGURE 1.14
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I will reserve the letter r for this purpose, throughout the book. Its magnitude,

r =
√

x2 + y2 + z2, (1.20)

is the distance from the origin, and

r̂ = r
r

= x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

(1.21)

is a unit vector pointing radially outward. The infinitesimal displacement vector,
from (x, y, z) to (x + dx, y + dy, z + dz), is

dl = dx x̂ + dy ŷ + dz ẑ. (1.22)

(We could call this dr, since that’s what it is, but it is useful to have a special
notation for infinitesimal displacements.)

In electrodynamics, one frequently encounters problems involving two
points—typically, a source point, r′, where an electric charge is located, and
a field point, r, at which you are calculating the electric or magnetic field
(Fig. 1.14). It pays to adopt right from the start some short-hand notation for
the separation vector from the source point to the field point. I shall use for this
purpose the script letter r:

r ≡ r − r′. (1.23)

Its magnitude is

r = |r − r′|, (1.24)

and a unit vector in the direction from r′ to r is

r̂ = r
r = r − r′

|r − r′| . (1.25)

In Cartesian coordinates,

r = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ, (1.26)

r =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2, (1.27)

r̂ = (x − x ′)x̂ + (y − y′)ŷ + (z − z′)ẑ√
(x − x ′)2 + (y − y′)2 + (z − z′)2

(1.28)

(from which you can appreciate the economy of the script-r notation).

Problem 1.7 Find the separation vector r from the source point (2,8,7) to the field
point (4,6,8). Determine its magnitude (r), and construct the unit vector r̂.
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1.1.5 How Vectors Transform2

The definition of a vector as “a quantity with a magnitude and direction” is not
altogether satisfactory: What precisely does “direction” mean? This may seem a
pedantic question, but we shall soon encounter a species of derivative that looks
rather like a vector, and we’ll want to know for sure whether it is one.

You might be inclined to say that a vector is anything that has three components
that combine properly under addition. Well, how about this: We have a barrel of
fruit that contains Nx pears, Ny apples, and Nz bananas. Is N = Nx x̂ + Ny ŷ +
Nz ẑ a vector? It has three components, and when you add another barrel with
Mx pears, My apples, and Mz bananas the result is (Nx + Mx ) pears, (Ny + My)

apples, (Nz + Mz) bananas. So it does add like a vector. Yet it’s obviously not
a vector, in the physicist’s sense of the word, because it doesn’t really have a
direction. What exactly is wrong with it?

The answer is that N does not transform properly when you change coordi-
nates. The coordinate frame we use to describe positions in space is of course
entirely arbitrary, but there is a specific geometrical transformation law for con-
verting vector components from one frame to another. Suppose, for instance, the
x, y, z system is rotated by angle φ, relative to x, y, z, about the common x = x
axes. From Fig. 1.15,

Ay = A cos θ, Az = A sin θ,

while

Ay = A cos θ = A cos(θ − φ) = A(cos θ cos φ + sin θ sin φ)

= cos φ Ay + sin φ Az,

Az = A sin θ = A sin(θ − φ) = A(sin θ cos φ − cos θ sin φ)

= − sin φ Ay + cos φ Az .

y

z

θ φ

A y

z

θ

FIGURE 1.15

2This section can be skipped without loss of continuity.
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We might express this conclusion in matrix notation:

(
Ay

Az

)
=

(
cos φ sin φ

− sin φ cos φ

)(
Ay

Az

)
. (1.29)

More generally, for rotation about an arbitrary axis in three dimensions, the
transformation law takes the form

⎛
⎝ Ax

Ay

Az

⎞
⎠ =

⎛
⎝ Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

⎞
⎠

⎛
⎝ Ax

Ay

Az

⎞
⎠ , (1.30)

or, more compactly,

Ai =
3∑

j=1

Ri j A j , (1.31)

where the index 1 stands for x , 2 for y, and 3 for z. The elements of the ma-
trix R can be ascertained, for a given rotation, by the same sort of trigonometric
arguments as we used for a rotation about the x axis.

Now: Do the components of N transform in this way? Of course not—it doesn’t
matter what coordinates you use to represent positions in space; there are still just
as many apples in the barrel. You can’t convert a pear into a banana by choosing
a different set of axes, but you can turn Ax into Ay . Formally, then, a vector is
any set of three components that transforms in the same manner as a displace-
ment when you change coordinates. As always, displacement is the model for the
behavior of all vectors.3

By the way, a (second-rank) tensor is a quantity with nine components, Txx ,
Txy , Txz , Tyx , . . . , Tzz , which transform with two factors of R:

T xx = Rxx (Rxx Txx + Rxy Txy + Rxz Txz)

+ Rxy(Rxx Tyx + Rxy Tyy + Rxz Tyz)

+ Rxz(Rxx Tzx + Rxy Tzy + Rxz Tzz), . . .

or, more compactly,

T i j =
3∑

k=1

3∑
l=1

Rik R jl Tkl . (1.32)

3If you’re a mathematician you might want to contemplate generalized vector spaces in which the
“axes” have nothing to do with direction and the basis vectors are no longer x̂, ŷ, and ẑ (indeed, there
may be more than three dimensions). This is the subject of linear algebra. But for our purposes all
vectors live in ordinary 3-space (or, in Chapter 12, in 4-dimensional space-time.)
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In general, an nth-rank tensor has n indices and 3n components, and transforms
with n factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is
a tensor of rank zero.4

Problem 1.8

(a) Prove that the two-dimensional rotation matrix (Eq. 1.29) preserves dot prod-
ucts. (That is, show that Ay B y + Az Bz = Ay By + Az Bz .)

(b) What constraints must the elements (Ri j ) of the three-dimensional rotation ma-
trix (Eq. 1.30) satisfy, in order to preserve the length of A (for all vectors A)?

Problem 1.9 Find the transformation matrix R that describes a rotation by 120◦

about an axis from the origin through the point (1, 1, 1). The rotation is clockwise
as you look down the axis toward the origin.

Problem 1.10

(a) How do the components of a vector5 transform under a translation of coordi-
nates (x = x , y = y − a, z = z, Fig. 1.16a)?

(b) How do the components of a vector transform under an inversion of coordinates
(x = −x , y = −y, z = −z, Fig. 1.16b)?

(c) How do the components of a cross product (Eq. 1.13) transform under inver-
sion? [The cross-product of two vectors is properly called a pseudovector be-
cause of this “anomalous” behavior.] Is the cross product of two pseudovectors
a vector, or a pseudovector? Name two pseudovector quantities in classical me-
chanics.

(d) How does the scalar triple product of three vectors transform under inversions?
(Such an object is called a pseudoscalar.)

y

z

x x

z

(a)

ya }

z

(b)

y

x

x

z

y

FIGURE 1.16

4A scalar does not change when you change coordinates. In particular, the components of a vector are
not scalars, but the magnitude is.
5Beware: The vector r (Eq. 1.19) goes from a specific point in space (the origin, O) to the point
P = (x, y, z). Under translations the new origin (Ō) is at a different location, and the arrow from Ō
to P is a completely different vector. The original vector r still goes from O to P , regardless of the
coordinates used to label these points.
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1.2 DIFFERENTIAL CALCULUS

1.2.1 “Ordinary” Derivatives

Suppose we have a function of one variable: f (x). Question: What does the
derivative, d f/dx , do for us? Answer: It tells us how rapidly the function f (x)

varies when we change the argument x by a tiny amount, dx :

d f =
(

d f

dx

)
dx . (1.33)

In words: If we increment x by an infinitesimal amount dx , then f changes
by an amount d f ; the derivative is the proportionality factor. For example, in
Fig. 1.17(a), the function varies slowly with x , and the derivative is correspond-
ingly small. In Fig. 1.17(b), f increases rapidly with x , and the derivative is large,
as you move away from x = 0.

Geometrical Interpretation: The derivative d f/dx is the slope of the graph of
f versus x .

1.2.2 Gradient

Suppose, now, that we have a function of three variables—say, the temperature
T (x, y, z) in this room. (Start out in one corner, and set up a system of axes; then
for each point (x, y, z) in the room, T gives the temperature at that spot.) We want
to generalize the notion of “derivative” to functions like T , which depend not on
one but on three variables.

A derivative is supposed to tell us how fast the function varies, if we move a
little distance. But this time the situation is more complicated, because it depends
on what direction we move: If we go straight up, then the temperature will prob-
ably increase fairly rapidly, but if we move horizontally, it may not change much
at all. In fact, the question “How fast does T vary?” has an infinite number of
answers, one for each direction we might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial deriva-
tives states that

dT =
(

∂T

∂x

)
dx +

(
∂T

∂y

)
dy +

(
∂T

∂z

)
dz. (1.34)

x

f

(a) x

f

(b)

FIGURE 1.17
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This tells us how T changes when we alter all three variables by the infinites-
imal amounts dx, dy, dz. Notice that we do not require an infinite number of
derivatives—three will suffice: the partial derivatives along each of the three co-
ordinate directions.

Equation 1.34 is reminiscent of a dot product:

dT =
(

∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ
)

· (dx x̂ + dy ŷ + dz ẑ)

= (∇T ) · (dl), (1.35)

where

∇T ≡ ∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ (1.36)

is the gradient of T . Note that ∇T is a vector quantity, with three components;
it is the generalized derivative we have been looking for. Equation 1.35 is the
three-dimensional version of Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has
magnitude and direction. To determine its geometrical meaning, let’s rewrite the
dot product (Eq. 1.35) using Eq. 1.1:

dT = ∇T · dl = |∇T ||dl| cos θ, (1.37)

where θ is the angle between ∇T and dl. Now, if we fix the magnitude |dl| and
search around in various directions (that is, vary θ ), the maximum change in T
evidentally occurs when θ = 0 (for then cos θ = 1). That is, for a fixed distance
|dl|, dT is greatest when I move in the same direction as ∇T . Thus:

The gradient ∇T points in the direction of maximum increase of the
function T .

Moreover:

The magnitude |∇T | gives the slope (rate of increase) along this
maximal direction.

Imagine you are standing on a hillside. Look all around you, and find the di-
rection of steepest ascent. That is the direction of the gradient. Now measure the
slope in that direction (rise over run). That is the magnitude of the gradient. (Here
the function we’re talking about is the height of the hill, and the coordinates it
depends on are positions—latitude and longitude, say. This function depends on
only two variables, not three, but the geometrical meaning of the gradient is easier
to grasp in two dimensions.) Notice from Eq. 1.37 that the direction of maximum
descent is opposite to the direction of maximum ascent, while at right angles
(θ = 90◦) the slope is zero (the gradient is perpendicular to the contour lines).
You can conceive of surfaces that do not have these properties, but they always
have “kinks” in them, and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If ∇T = 0 at (x, y, z),
then dT = 0 for small displacements about the point (x, y, z). This is, then, a
stationary point of the function T (x, y, z). It could be a maximum (a summit),



1.2 Differential Calculus 15

a minimum (a valley), a saddle point (a pass), or a “shoulder.” This is analogous
to the situation for functions of one variable, where a vanishing derivative signals
a maximum, a minimum, or an inflection. In particular, if you want to locate the
extrema of a function of three variables, set its gradient equal to zero.

Example 1.3. Find the gradient of r = √
x2 + y2 + z2 (the magnitude of the

position vector).

Solution

∇r = ∂r

∂x
x̂ + ∂r

∂y
ŷ + ∂r

∂z
ẑ

= 1

2

2x√
x2 + y2 + z2

x̂ + 1

2

2y√
x2 + y2 + z2

ŷ + 1

2

2z√
x2 + y2 + z2

ẑ

= x x̂ + y ŷ + z ẑ√
x2 + y2 + z2

= r
r

= r̂.

Does this make sense? Well, it says that the distance from the origin increases
most rapidly in the radial direction, and that its rate of increase in that direction
is 1. . . just what you’d expect.

Problem 1.11 Find the gradients of the following functions:

(a) f (x, y, z) = x2 + y3 + z4.

(b) f (x, y, z) = x2 y3z4.

(c) f (x, y, z) = ex sin(y) ln(z).

Problem 1.12 The height of a certain hill (in feet) is given by

h(x, y) = 10(2xy − 3x2 − 4y2 − 18x + 28y + 12),

where y is the distance (in miles) north, x the distance east of South Hadley.

(a) Where is the top of the hill located?

(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile
east of South Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let r be the separation vector from a fixed point (x ′, y′, z′) to the•
point (x, y, z), and let r be its length. Show that

(a) ∇(r2) = 2r.
(b) ∇(1/r) = −r̂/r2.

(c) What is the general formula for ∇(rn)?
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Problem 1.14 Suppose that f is a function of two variables (y and z) only.!
Show that the gradient ∇ f = (∂ f/∂y)ŷ + (∂ f/∂z)ẑ transforms as a vector un-
der rotations, Eq. 1.29. [Hint: (∂ f/∂ y) = (∂ f/∂y)(∂y/∂ y) + (∂ f/∂z)(∂z/∂ y),
and the analogous formula for ∂ f/∂z. We know that y = y cos φ + z sin φ and
z = −y sin φ + z cos φ; “solve” these equations for y and z (as functions of y
and z), and compute the needed derivatives ∂y/∂ y, ∂z/∂ y, etc.]

1.2.3 The Del Operator

The gradient has the formal appearance of a vector, ∇, “multiplying” a scalar T :

∇T =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
T . (1.38)

(For once, I write the unit vectors to the left, just so no one will think this means
∂ x̂/∂x , and so on—which would be zero, since x̂ is constant.) The term in paren-
theses is called del:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (1.39)

Of course, del is not a vector, in the usual sense. Indeed, it doesn’t mean much
until we provide it with a function to act upon. Furthermore, it does not “multiply”
T ; rather, it is an instruction to differentiate what follows. To be precise, then, we
say that ∇ is a vector operator that acts upon T , not a vector that multiplies T .

With this qualification, though, ∇ mimics the behavior of an ordinary vector in
virtually every way; almost anything that can be done with other vectors can also
be done with ∇, if we merely translate “multiply” by “act upon.” So by all means
take the vector appearance of ∇ seriously: it is a marvelous piece of notational
simplification, as you will appreciate if you ever consult Maxwell’s original work
on electromagnetism, written without the benefit of ∇.

Now, an ordinary vector A can multiply in three ways:

1. By a scalar a : Aa;

2. By a vector B, via the dot product: A · B;

3. By a vector B via the cross product: A × B.

Correspondingly, there are three ways the operator ∇ can act:

1. On a scalar function T : ∇T (the gradient);

2. On a vector function v, via the dot product: ∇ · v (the divergence);

3. On a vector function v, via the cross product: ∇ × v (the curl).
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We have already discussed the gradient. In the following sections we examine the
other two vector derivatives: divergence and curl.

1.2.4 The Divergence

From the definition of ∇ we construct the divergence:

∇ · v =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
· (vx x̂ + vy ŷ + vz ẑ)

= ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
. (1.40)

Observe that the divergence of a vector function6 v is itself a scalar ∇ · v.
Geometrical Interpretation: The name divergence is well chosen, for ∇ · v

is a measure of how much the vector v spreads out (diverges) from the point in
question. For example, the vector function in Fig. 1.18a has a large (positive)
divergence (if the arrows pointed in, it would be a negative divergence), the func-
tion in Fig. 1.18b has zero divergence, and the function in Fig. 1.18c again has a
positive divergence. (Please understand that v here is a function—there’s a differ-
ent vector associated with every point in space. In the diagrams, of course, I can
only draw the arrows at a few representative locations.)

Imagine standing at the edge of a pond. Sprinkle some sawdust or pine needles
on the surface. If the material spreads out, then you dropped it at a point of positive
divergence; if it collects together, you dropped it at a point of negative divergence.
(The vector function v in this model is the velocity of the water at the surface—
this is a two-dimensional example, but it helps give one a “feel” for what the
divergence means. A point of positive divergence is a source, or “faucet”; a point
of negative divergence is a sink, or “drain.”)

(b)(a) (c)

FIGURE 1.18

6A vector function v(x, y, z) = vx (x, y, z) x̂ + vy(x, y, z) ŷ + vz(x, y, z) ẑ is really three functions—
one for each component. There’s no such thing as the divergence of a scalar.
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Example 1.4. Suppose the functions in Fig. 1.18 are va = r = x x̂ + y ŷ + z ẑ,
vb = ẑ, and vc = z ẑ. Calculate their divergences.

Solution

∇ · va = ∂

∂x
(x) + ∂

∂y
(y) + ∂

∂z
(z) = 1 + 1 + 1 = 3.

As anticipated, this function has a positive divergence.

∇ · vb = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(1) = 0 + 0 + 0 = 0,

as expected.

∇ · vc = ∂

∂x
(0) + ∂

∂y
(0) + ∂

∂z
(z) = 0 + 0 + 1 = 1.

Problem 1.15 Calculate the divergence of the following vector functions:

(a) va = x2 x̂ + 3xz2 ŷ − 2xz ẑ.

(b) vb = xy x̂ + 2yz ŷ + 3zx ẑ.

(c) vc = y2 x̂ + (2xy + z2) ŷ + 2yz ẑ.

Problem 1.16 Sketch the vector function•

v = r̂
r 2

,

and compute its divergence. The answer may surprise you. . . can you explain it?

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar!
under rotations. [Hint: Use Eq. 1.29 to determine vy and vz , and the method of
Prob. 1.14 to calculate the derivatives. Your aim is to show that ∂vy/∂ y + ∂vz/∂z =
∂vy/∂y + ∂vz/∂z.]

1.2.5 The Curl

From the definition of ∇ we construct the curl:

∇ × v =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
vx vy vz

∣∣∣∣∣∣
= x̂

(
∂vz

∂y
− ∂vy

∂z

)
+ ŷ

(
∂vx

∂z
− ∂vz

∂x

)
+ ẑ

(
∂vy

∂x
− ∂vx

∂y

)
. (1.41)
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(a)
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x (b)

y

z

FIGURE 1.19

Notice that the curl of a vector function7 v is, like any cross product, a vector.
Geometrical Interpretation: The name curl is also well chosen, for ∇ × v is

a measure of how much the vector v swirls around the point in question. Thus
the three functions in Fig. 1.18 all have zero curl (as you can easily check for
yourself), whereas the functions in Fig. 1.19 have a substantial curl, pointing in the
z direction, as the natural right-hand rule would suggest. Imagine (again) you are
standing at the edge of a pond. Float a small paddlewheel (a cork with toothpicks
pointing out radially would do); if it starts to rotate, then you placed it at a point
of nonzero curl. A whirlpool would be a region of large curl.

Example 1.5. Suppose the function sketched in Fig. 1.19a is va = −yx̂ + x ŷ,
and that in Fig. 1.19b is vb = x ŷ. Calculate their curls.

Solution

∇ × va =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z
−y x 0

∣∣∣∣∣∣ = 2ẑ,

and

∇ × vb =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂/∂x ∂/∂y ∂/∂z

0 x 0

∣∣∣∣∣∣ = ẑ.

As expected, these curls point in the +z direction. (Incidentally, they both have
zero divergence, as you might guess from the pictures: nothing is “spreading
out”. . . it just “swirls around.”)

7There’s no such thing as the curl of a scalar.



20 Chapter 1 Vector Analysis

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Draw a circle in the xy plane. At a few representative points draw
the vector v tangent to the circle, pointing in the clockwise direction. By comparing
adjacent vectors, determine the sign of ∂vx/∂y and ∂vy/∂x . According to Eq. 1.41,
then, what is the direction of ∇ × v? Explain how this example illustrates the geo-
metrical interpretation of the curl.

Problem 1.20 Construct a vector function that has zero divergence and zero curl
everywhere. (A constant will do the job, of course, but make it something a little
more interesting than that!)

1.2.6 Product Rules

The calculation of ordinary derivatives is facilitated by a number of rules, such as
the sum rule:

d

dx
( f + g) = d f

dx
+ dg

dx
,

the rule for multiplying by a constant:

d

dx
(k f ) = k

d f

dx
,

the product rule:

d

dx
( f g) = f

dg

dx
+ g

d f

dx
,

and the quotient rule:

d

dx

(
f

g

)
=

g
d f

dx
− f

dg

dx
g2

.

Similar relations hold for the vector derivatives. Thus,

∇( f + g) = ∇ f + ∇g, ∇ · (A + B) = (∇ · A) + (∇ · B),

∇ × (A + B) = (∇ × A) + (∇ × B),

and

∇(k f ) = k∇ f, ∇ · (kA) = k(∇ · A), ∇ × (kA) = k(∇ × A),

as you can check for yourself. The product rules are not quite so simple. There
are two ways to construct a scalar as the product of two functions:

f g (product of two scalar functions),

A · B (dot product of two vector functions),
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and two ways to make a vector:

f A (scalar times vector),

A × B (cross product of two vectors).

Accordingly, there are six product rules, two for gradients:

(i) ∇( f g) = f ∇g + g∇ f,

(ii) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A,

two for divergences:

(iii) ∇ · ( f A) = f (∇ · A) + A · (∇ f ),

(iv) ∇ · (A × B) = B · (∇ × A) − A · (∇ × B),

and two for curls:

(v) ∇ × ( f A) = f (∇ × A) − A × (∇ f ),

(vi) ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A).

You will be using these product rules so frequently that I have put them inside the
front cover for easy reference. The proofs come straight from the product rule for
ordinary derivatives. For instance,

∇ · ( f A) = ∂

∂x
( f Ax ) + ∂

∂y
( f Ay) + ∂

∂z
( f Az)

=
(

∂ f

∂x
Ax + f

∂ Ax

∂x

)
+

(
∂ f

∂y
Ay + f

∂ Ay

∂y

)
+

(
∂ f

∂z
Az + f

∂ Az

∂z

)

= (∇ f ) · A + f (∇ · A).

It is also possible to formulate three quotient rules:

∇
(

f

g

)
= g∇ f − f ∇g

g2
,

∇ ·
(

A
g

)
= g(∇ · A) − A · (∇g)

g2
,

∇ ×
(

A
g

)
= g(∇ × A) + A × (∇g)

g2
.

However, since these can be obtained quickly from the corresponding product
rules, there is no point in listing them separately.
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Problem 1.21 Prove product rules (i), (iv), and (v).

Problem 1.22

(a) If A and B are two vector functions, what does the expression (A · ∇)B mean?
(That is, what are its x , y, and z components, in terms of the Cartesian compo-
nents of A, B, and ∇?)

(b) Compute (r̂ · ∇)r̂, where r̂ is the unit vector defined in Eq. 1.21.

(c) For the functions in Prob. 1.15, evaluate (va · ∇)vb.

Problem 1.23 (For masochists only.) Prove product rules (ii) and (vi). Refer to
Prob. 1.22 for the definition of (A · ∇)B.

Problem 1.24 Derive the three quotient rules.

Problem 1.25

(a) Check product rule (iv) (by calculating each term separately) for the functions

A = x x̂ + 2y ŷ + 3z ẑ; B = 3y x̂ − 2x ŷ.

(b) Do the same for product rule (ii).

(c) Do the same for rule (vi).

1.2.7 Second Derivatives

The gradient, the divergence, and the curl are the only first derivatives we can
make with ∇; by applying ∇ twice, we can construct five species of second deriva-
tives. The gradient ∇T is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient: ∇ · (∇T ).

(2) Curl of gradient: ∇ × (∇T ).

The divergence ∇ · v is a scalar—all we can do is take its gradient:

(3) Gradient of divergence: ∇(∇ · v).

The curl ∇ × v is a vector, so we can take its divergence and curl:

(4) Divergence of curl: ∇ · (∇ × v).

(5) Curl of curl: ∇ × (∇ × v).

This exhausts the possibilities, and in fact not all of them give anything new.
Let’s consider them one at a time:

(1) ∇ · (∇T ) =
(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(

∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ
)

= ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
. (1.42)
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This object, which we write as ∇2T for short, is called the Laplacian of T ; we
shall be studying it in great detail later on. Notice that the Laplacian of a scalar
T is a scalar. Occasionally, we shall speak of the Laplacian of a vector, ∇2v. By
this we mean a vector quantity whose x-component is the Laplacian of vx , and
so on:8

∇2v ≡ (∇2vx )x̂ + (∇2vy)ŷ + (∇2vz)ẑ. (1.43)

This is nothing more than a convenient extension of the meaning of ∇2.
(2) The curl of a gradient is always zero:

∇ × (∇T ) = 0. (1.44)

This is an important fact, which we shall use repeatedly; you can easily prove it
from the definition of ∇, Eq. 1.39. Beware: You might think Eq. 1.44 is “obvi-
ously” true—isn’t it just (∇ × ∇)T , and isn’t the cross product of any vector (in
this case, ∇) with itself always zero? This reasoning is suggestive, but not quite
conclusive, since ∇ is an operator and does not “multiply” in the usual way. The
proof of Eq. 1.44, in fact, hinges on the equality of cross derivatives:

∂

∂x

(
∂T

∂y

)
= ∂

∂y

(
∂T

∂x

)
. (1.45)

If you think I’m being fussy, test your intuition on this one:

(∇T ) × (∇S).

Is that always zero? (It would be, of course, if you replaced the ∇’s by an ordinary
vector.)

(3) ∇(∇ · v) seldom occurs in physical applications, and it has not been given
any special name of its own—it’s just the gradient of the divergence. Notice
that ∇(∇ · v) is not the same as the Laplacian of a vector: ∇2v = (∇ · ∇)v �=
∇(∇ · v).

(4) The divergence of a curl, like the curl of a gradient, is always zero:

∇ · (∇ × v) = 0. (1.46)

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using
the vector identity A · (B × C) = (A × B) · C.)

(5) As you can check from the definition of ∇:

∇ × (∇ × v) = ∇(∇ · v) − ∇2v. (1.47)

So curl-of-curl gives nothing new; the first term is just number (3), and the sec-
ond is the Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the

8In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be
differentiated (see Sect. 1.4.1).
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Laplacian of a vector, in preference to Eq. 1.43, which makes explicit reference
to Cartesian coordinates.)

Really, then, there are just two kinds of second derivatives: the Laplacian
(which is of fundamental importance) and the gradient-of-divergence (which
we seldom encounter). We could go through a similar ritual to work out third
derivatives, but fortunately second derivatives suffice for practically all physical
applications.

A final word on vector differential calculus: It all flows from the operator ∇,
and from taking seriously its vectorial character. Even if you remembered only
the definition of ∇, you could easily reconstruct all the rest.

Problem 1.26 Calculate the Laplacian of the following functions:

(a) Ta = x2 + 2xy + 3z + 4.

(b) Tb = sin x sin y sin z.

(c) Tc = e−5x sin 4y cos 3z.

(d) v = x2 x̂ + 3xz2 ŷ − 2xz ẑ.

Problem 1.27 Prove that the divergence of a curl is always zero. Check it for func-
tion va in Prob. 1.15.

Problem 1.28 Prove that the curl of a gradient is always zero. Check it for function
(b) in Prob. 1.11.

1.3 INTEGRAL CALCULUS

1.3.1 Line, Surface, and Volume Integrals

In electrodynamics, we encounter several different kinds of integrals, among
which the most important are line (or path) integrals, surface integrals (or
flux), and volume integrals.

(a) Line Integrals. A line integral is an expression of the form∫ b

a
v · dl, (1.48)

where v is a vector function, dl is the infinitesimal displacement vector (Eq. 1.22),
and the integral is to be carried out along a prescribed path P from point a to point
b (Fig. 1.20). If the path in question forms a closed loop (that is, if b = a), I shall
put a circle on the integral sign: ∮

v · dl. (1.49)

At each point on the path, we take the dot product of v (evaluated at that point)
with the displacement dl to the next point on the path. To a physicist, the most
familiar example of a line integral is the work done by a force F: W = ∫

F · dl.
Ordinarily, the value of a line integral depends critically on the path taken from

a to b, but there is an important special class of vector functions for which the line
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FIGURE 1.21

integral is independent of path and is determined entirely by the end points. It will
be our business in due course to characterize this special class of vectors. (A force
that has this property is called conservative.)

Example 1.6. Calculate the line integral of the function v = y2 x̂ + 2x(y + 1) ŷ
from the point a = (1, 1, 0) to the point b = (2, 2, 0), along the paths (1) and (2)
in Fig. 1.21. What is

∮
v · dl for the loop that goes from a to b along (1) and

returns to a along (2)?

Solution
As always, dl = dx x̂ + dy ŷ + dz ẑ. Path (1) consists of two parts. Along the
“horizontal” segment, dy = dz = 0, so

(i) dl = dx x̂, y = 1, v · dl = y2 dx = dx, so
∫

v · dl = ∫ 2
1 dx = 1.

On the “vertical” stretch, dx = dz = 0, so

(ii) dl = dy ŷ, x = 2, v · dl = 2x(y + 1) dy = 4(y + 1) dy, so

∫
v · dl = 4

∫ 2

1
(y + 1) dy = 10.

By path (1), then,
∫ b

a
v · dl = 1 + 10 = 11.

Meanwhile, on path (2) x = y, dx = dy, and dz = 0, so
dl = dx x̂ + dx ŷ, v · dl = x2 dx + 2x(x + 1) dx = (3x2 + 2x) dx,

and ∫ b

a
v · dl =

∫ 2

1
(3x2 + 2x) dx = (x3 + x2)

∣∣2
1 = 10.

(The strategy here is to get everything in terms of one variable; I could just as well
have eliminated x in favor of y.)
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For the loop that goes out (1) and back (2), then,
∮

v · dl = 11 − 10 = 1.

(b) Surface Integrals. A surface integral is an expression of the form
∫

S
v · da, (1.50)

where v is again some vector function, and the integral is over a specified surface
S. Here da is an infinitesimal patch of area, with direction perpendicular to the
surface (Fig. 1.22). There are, of course, two directions perpendicular to any
surface, so the sign of a surface integral is intrinsically ambiguous. If the surface
is closed (forming a “balloon”), in which case I shall again put a circle on the
integral sign ∮

v · da,

then tradition dictates that “outward” is positive, but for open surfaces it’s arbi-
trary. If v describes the flow of a fluid (mass per unit area per unit time), then∫

v · da represents the total mass per unit time passing through the surface—
hence the alternative name, “flux.”

Ordinarily, the value of a surface integral depends on the particular surface
chosen, but there is a special class of vector functions for which it is independent
of the surface and is determined entirely by the boundary line. An important task
will be to characterize this special class of functions.

x

y

z
da

FIGURE 1.22
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Example 1.7. Calculate the surface integral of v = 2xz x̂ + (x+2) ŷ + y(z2−3)

ẑ over five sides (excluding the bottom) of the cubical box (side 2) in Fig. 1.23.
Let “upward and outward” be the positive direction, as indicated by the arrows.

Solution
Taking the sides one at a time:
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(i) x = 2, da = dy dz x̂, v · da = 2xz dy dz = 4z dy dz, so

∫
v · da = 4

∫ 2

0
dy

∫ 2

0
z dz = 16.

(ii) x = 0, da = −dy dz x̂, v · da = −2xz dy dz = 0, so∫
v · da = 0.

(iii) y = 2, da = dx dz ŷ, v · da = (x + 2) dx dz, so

∫
v · da =

∫ 2

0
(x + 2) dx

∫ 2

0
dz = 12.

(iv) y = 0, da = −dx dz ŷ, v · da = −(x + 2) dx dz, so

∫
v · da = −

∫ 2

0
(x + 2) dx

∫ 2

0
dz = −12.

(v) z = 2, da = dx dy ẑ, v · da = y(z2 − 3) dx dy = y dx dy, so

∫
v · da =

∫ 2

0
dx

∫ 2

0
y dy = 4.

The total flux is ∫
surface

v · da = 16 + 0 + 12 − 12 + 4 = 20.

(c) Volume Integrals. A volume integral is an expression of the form
∫

V
T dτ, (1.51)

where T is a scalar function and dτ is an infinitesimal volume element. In Carte-
sian coordinates,

dτ = dx dy dz. (1.52)

For example, if T is the density of a substance (which might vary from point to
point), then the volume integral would give the total mass. Occasionally we shall
encounter volume integrals of vector functions:

∫
v dτ =

∫
(vx x̂ + vy ŷ + vz ẑ)dτ = x̂

∫
vx dτ + ŷ

∫
vydτ + ẑ

∫
vzdτ ;

(1.53)

because the unit vectors (x̂, ŷ, and ẑ) are constants, they come outside the integral.
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Example 1.8. Calculate the volume integral of T = xyz2 over the prism in
Fig. 1.24.

Solution
You can do the three integrals in any order. Let’s do x first: it runs from 0 to
(1 − y), then y (it goes from 0 to 1), and finally z (0 to 3):

∫
T dτ =

∫ 3

0
z2

{∫ 1

0
y

[∫ 1−y

0
x dx

]
dy

}
dz

= 1

2

∫ 3

0
z2 dz

∫ 1

0
(1 − y)2 y dy = 1

2
(9)

(
1

12

)
= 3

8
.

x

y

z

1
1

3

FIGURE 1.24

Problem 1.29 Calculate the line integral of the function v = x2 x̂ + 2yz ŷ + y2 ẑ
from the origin to the point (1,1,1) by three different routes:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1).

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1).

(c) The direct straight line.

(d) What is the line integral around the closed loop that goes out along path (a) and
back along path (b)?

Problem 1.30 Calculate the surface integral of the function in Ex. 1.7, over the bot-
tom of the box. For consistency, let “upward” be the positive direction. Does the
surface integral depend only on the boundary line for this function? What is the
total flux over the closed surface of the box (including the bottom)? [Note: For the
closed surface, the positive direction is “outward,” and hence “down,” for the bottom
face.]

Problem 1.31 Calculate the volume integral of the function T = z2 over the tetra-
hedron with corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).
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1.3.2 The Fundamental Theorem of Calculus

Suppose f (x) is a function of one variable. The fundamental theorem of calcu-
lus says:

∫ b

a

(
d f

dx

)
dx = f (b) − f (a). (1.54)

In case this doesn’t look familiar, I’ll write it another way:
∫ b

a
F(x) dx = f (b) − f (a),

where d f/dx = F(x). The fundamental theorem tells you how to integrate F(x):
you think up a function f (x) whose derivative is equal to F .

Geometrical Interpretation: According to Eq. 1.33, d f = (d f/dx)dx is the
infinitesimal change in f when you go from (x) to (x + dx). The fundamental
theorem (Eq. 1.54) says that if you chop the interval from a to b (Fig. 1.25) into
many tiny pieces, dx , and add up the increments d f from each little piece, the
result is (not surprisingly) equal to the total change in f : f (b) − f (a). In other
words, there are two ways to determine the total change in the function: either
subtract the values at the ends or go step-by-step, adding up all the tiny increments
as you go. You’ll get the same answer either way.

Notice the basic format of the fundamental theorem: the integral of a derivative
over some region is given by the value of the function at the end points (bound-
aries). In vector calculus there are three species of derivative (gradient, diver-
gence, and curl), and each has its own “fundamental theorem,” with essentially
the same format. I don’t plan to prove these theorems here; rather, I will explain
what they mean, and try to make them plausible. Proofs are given in Appendix A.

1.3.3 The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables T (x, y, z). Starting at point
a, we move a small distance dl1 (Fig. 1.26). According to Eq. 1.37, the function
T will change by an amount

dT = (∇T ) · dl1.

xbdxa

f (x)

f (b)

f (a)

FIGURE 1.25

d l1

y

z

x

a

b

FIGURE 1.26
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Now we move a little further, by an additional small displacement dl2; the incre-
mental change in T will be (∇T ) · dl2. In this manner, proceeding by infinitesimal
steps, we make the journey to point b. At each step we compute the gradient of T
(at that point) and dot it into the displacement dl. . . this gives us the change in T .
Evidently the total change in T in going from a to b (along the path selected) is

∫ b

a
(∇T ) · dl = T (b) − T (a). (1.55)

This is the fundamental theorem for gradients; like the “ordinary” fundamental
theorem, it says that the integral (here a line integral) of a derivative (here the
gradient) is given by the value of the function at the boundaries (a and b).

Geometrical Interpretation: Suppose you wanted to determine the height of
the Eiffel Tower. You could climb the stairs, using a ruler to measure the rise at
each step, and adding them all up (that’s the left side of Eq. 1.55), or you could
place altimeters at the top and the bottom, and subtract the two readings (that’s
the right side); you should get the same answer either way (that’s the fundamental
theorem).

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the
path taken from a to b. But the right side of Eq. 1.55 makes no reference to the
path—only to the end points. Evidently, gradients have the special property that
their line integrals are path independent:

Corollary 1:
∫ b

a (∇T ) · dl is independent of the path taken from a to b.

Corollary 2:
∮
(∇T ) · dl = 0, since the beginning and end points

are identical, and hence T (b) − T (a) = 0.

Example 1.9. Let T = xy2, and take point a to be the origin (0, 0, 0) and b the
point (2, 1, 0). Check the fundamental theorem for gradients.

Solution
Although the integral is independent of path, we must pick a specific path
in order to evaluate it. Let’s go out along the x axis (step i) and then up
(step ii) (Fig. 1.27). As always, dl = dx x̂ + dy ŷ + dz ẑ; ∇T = y2 x̂ + 2xy ŷ.

(i) y = 0; dl = dx x̂, ∇T · dl = y2 dx = 0, so
∫

i
∇T · dl = 0.

(ii) x = 2; dl = dy ŷ, ∇T · dl = 2xy dy = 4y dy, so

∫
ii
∇T · dl =

∫ 1

0
4y dy = 2y2

∣∣∣1

0
= 2.
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The total line integral is 2. Is this consistent with the fundamental theorem? Yes:
T (b) − T (a) = 2 − 0 = 2.

Now, just to convince you that the answer is independent of path, let me calcu-
late the same integral along path iii (the straight line from a to b):

(iii) y = 1
2 x, dy = 1

2 dx, ∇T · dl = y2 dx + 2xy dy = 3
4 x2 dx , so

∫
iii

∇T · dl =
∫ 2

0

3
4 x2 dx = 1

4 x3
∣∣∣2

0
= 2.

Problem 1.32 Check the fundamental theorem for gradients, using T = x2 +
4xy + 2yz3, the points a = (0, 0, 0), b = (1, 1, 1), and the three paths in Fig. 1.28:

(a) (0, 0, 0) → (1, 0, 0) → (1, 1, 0) → (1, 1, 1);

(b) (0, 0, 0) → (0, 0, 1) → (0, 1, 1) → (1, 1, 1);

(c) the parabolic path z = x2; y = x .

y

z

(a)x

y

z

(b)x

y

z

(c)x

FIGURE 1.28

1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

∫
V

(∇ · v) dτ =
∮
S

v · da. (1.56)
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In honor, I suppose, of its great importance, this theorem has at least three special
names: Gauss’s theorem, Green’s theorem, or simply the divergence theorem.
Like the other “fundamental theorems,” it says that the integral of a derivative (in
this case the divergence) over a region (in this case a volume, V) is equal to the
value of the function at the boundary (in this case the surface S that bounds the
volume). Notice that the boundary term is itself an integral (specifically, a surface
integral). This is reasonable: the “boundary” of a line is just two end points, but
the boundary of a volume is a (closed) surface.

Geometrical Interpretation: If v represents the flow of an incompressible fluid,
then the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out
through the surface, per unit time. Now, the divergence measures the “spreading
out” of the vectors from a point—a place of high divergence is like a “faucet,”
pouring out liquid. If we have a bunch of faucets in a region filled with incom-
pressible fluid, an equal amount of liquid will be forced out through the bound-
aries of the region. In fact, there are two ways we could determine how much is
being produced: (a) we could count up all the faucets, recording how much each
puts out, or (b) we could go around the boundary, measuring the flow at each
point, and add it all up. You get the same answer either way:∫

(faucets within the volume) =
∮

(flow out through the surface).

This, in essence, is what the divergence theorem says.

Example 1.10. Check the divergence theorem using the function

v = y2 x̂ + (2xy + z2) ŷ + (2yz) ẑ

and a unit cube at the origin (Fig. 1.29).

Solution
In this case

∇ · v = 2(x + y),

and ∫
V

2(x + y) dτ = 2
∫ 1

0

∫ 1

0

∫ 1

0
(x + y) dx dy dz,

∫ 1

0
(x + y) dx = 1

2 + y,

∫ 1

0
( 1

2 + y) dy = 1,

∫ 1

0
1 dz = 1.

Thus, ∫
V

∇ · v dτ = 2.
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So much for the left side of the divergence theorem. To evaluate the surface
integral we must consider separately the six faces of the cube:

(i)
∫

v · da =
∫ 1

0

∫ 1

0
y2dy dz = 1

3 .

(ii)
∫

v · da = −
∫ 1

0

∫ 1

0
y2 dy dz = − 1

3 .

(iii)
∫

v · da =
∫ 1

0

∫ 1

0
(2x + z2) dx dz = 4

3 .

(iv)

∫
v · da = −

∫ 1

0

∫ 1

0
z2 dx dz = − 1

3 .

(v)

∫
v · da =

∫ 1

0

∫ 1

0
2y dx dy = 1.

(vi)
∫

v · da = −
∫ 1

0

∫ 1

0
0 dx dy = 0.

So the total flux is: ∮
S

v · da = 1
3 − 1

3 + 4
3 − 1

3 + 1 + 0 = 2,

as expected.

Problem 1.33 Test the divergence theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.
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1.3.5 The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’
theorem, states that

∫
S

(∇ × v) · da =
∮
P

v · dl. (1.57)

As always, the integral of a derivative (here, the curl) over a region (here, a patch
of surface, S) is equal to the value of the function at the boundary (here, the
perimeter of the patch, P). As in the case of the divergence theorem, the boundary
term is itself an integral—specifically, a closed line integral.

Geometrical Interpretation: Recall that the curl measures the “twist” of the
vectors v; a region of high curl is a whirlpool—if you put a tiny paddle wheel
there, it will rotate. Now, the integral of the curl over some surface (or, more
precisely, the flux of the curl through that surface) represents the “total amount
of swirl,” and we can determine that just as well by going around the edge and
finding how much the flow is following the boundary (Fig. 1.31). Indeed,

∮
v · dl

is sometimes called the circulation of v.
You may have noticed an apparent ambiguity in Stokes’ theorem: concerning

the boundary line integral, which way are we supposed to go around (clockwise
or counterclockwise)? If we go the “wrong” way, we’ll pick up an overall sign
error. The answer is that it doesn’t matter which way you go as long as you are
consistent, for there is a compensating sign ambiguity in the surface integral:
Which way does da point? For a closed surface (as in the divergence theorem),
da points in the direction of the outward normal; but for an open surface, which
way is “out”? Consistency in Stokes’ theorem (as in all such matters) is given by
the right-hand rule: if your fingers point in the direction of the line integral, then
your thumb fixes the direction of da (Fig. 1.32).

Now, there are plenty of surfaces (infinitely many) that share any given bound-
ary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film
constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap
film will expand, making a larger surface, with the same boundary. Ordinarily, a
flux integral depends critically on what surface you integrate over, but evidently
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this is not the case with curls. For Stokes’ theorem says that
∫
(∇ × v) · da is equal

to the line integral of v around the boundary, and the latter makes no reference to
the specific surface you choose.

Corollary 1:
∫
(∇ × v) · da depends only on the boundary line, not

on the particular surface used.

Corollary 2:
∮
(∇ × v) · da = 0 for any closed surface, since the

boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We will develop
the parallel further in due course.

Example 1.11. Suppose v = (2xz + 3y2)ŷ + (4yz2)ẑ. Check Stokes’ theorem
for the square surface shown in Fig. 1.33.

Solution
Here

∇ × v = (4z2 − 2x) x̂ + 2z ẑ and da = dy dz x̂.

x
y

z

1

1

(iv) (ii)

(iii)

(i)

FIGURE 1.33

(In saying that da points in the x direction, we are committing ourselves to a
counterclockwise line integral. We could as well write da = −dy dz x̂, but then
we would be obliged to go clockwise.) Since x = 0 for this surface,

∫
(∇ × v) · da =

∫ 1

0

∫ 1

0
4z2 dy dz = 4

3
.
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Now, what about the line integral? We must break this up into four segments:

(i) x = 0, z = 0, v · dl = 3y2 dy,
∫

v · dl = ∫ 1
0 3y2 dy = 1,

(ii) x = 0, y = 1, v · dl = 4z2 dz,
∫

v · dl = ∫ 1
0 4z2 dz = 4

3
,

(iii) x = 0, z = 1, v · dl = 3y2 dy,
∫

v · dl = ∫ 0
1 3y2 dy = −1,

(iv) x = 0, y = 0, v · dl = 0,
∫

v · dl = ∫ 0
1 0 dz = 0.

So ∮
v · dl = 1 + 4

3
− 1 + 0 = 4

3
.

It checks.
A point of strategy: notice how I handled step (iii). There is a temptation to

write dl = −dy ŷ here, since the path goes to the left. You can get away with this,
if you absolutely insist, by running the integral from 0 → 1. But it is much safer
to say dl = dx x̂ + dy ŷ + dz ẑ always (never any minus signs) and let the limits
of the integral take care of the direction.

Problem 1.34 Test Stokes’ theorem for the function v = (xy) x̂ + (2yz) ŷ +
(3zx) ẑ, using the triangular shaded area of Fig. 1.34.

Problem 1.35 Check Corollary 1 by using the same function and boundary line as
in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of
the cube is open.
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1.3.6 Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product
rule for derivatives:

d

dx
( f g) = f

(
dg

dx

)
+ g

(
d f

dx

)
.
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Integrating both sides, and invoking the fundamental theorem:

∫ b

a

d

dx
( f g) dx = f g

∣∣∣b

a
=

∫ b

a
f

(
dg

dx

)
dx +

∫ b

a
g

(
d f

dx

)
dx,

or
∫ b

a
f

(
dg

dx

)
dx = −

∫ b

a
g

(
d f

dx

)
dx + f g

∣∣∣b

a
. (1.58)

That’s integration by parts. It applies to the situation in which you are called upon
to integrate the product of one function ( f ) and the derivative of another (g); it
says you can transfer the derivative from g to f , at the cost of a minus sign and a
boundary term.

Example 1.12. Evaluate the integral
∫ ∞

0
xe−x dx .

Solution
The exponential can be expressed as a derivative:

e−x = d

dx

(−e−x
) ;

in this case, then, f (x) = x , g(x) = −e−x , and d f/dx = 1, so
∫ ∞

0
xe−x dx =

∫ ∞

0
e−x dx − xe−x

∣∣∣∞
0

= −e−x
∣∣∣∞
0

= 1.

We can exploit the product rules of vector calculus, together with the appro-
priate fundamental theorems, in exactly the same way. For example, integrating

∇ · ( f A) = f (∇ · A) + A · (∇ f )

over a volume, and invoking the divergence theorem, yields
∫

∇ · ( f A) dτ =
∫

f (∇ · A) dτ +
∫

A · (∇ f ) dτ =
∮

f A · da,

or ∫
V

f (∇ · A) dτ = −
∫

V
A · (∇ f ) dτ +

∮
S

f A · da. (1.59)

Here again the integrand is the product of one function ( f ) and the derivative (in
this case the divergence) of another (A), and integration by parts licenses us to
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transfer the derivative from A to f (where it becomes a gradient), at the cost of a
minus sign and a boundary term (in this case a surface integral).

You might wonder how often one is likely to encounter an integral involving
the product of one function and the derivative of another; the answer is surpris-
ingly often, and integration by parts turns out to be one of the most powerful tools
in vector calculus.

Problem 1.36

(a) Show that∫
S

f (∇ × A) · da =
∫
S
[A × (∇ f )] · da +

∮
P

f A · dl. (1.60)

(b) Show that∫
V

B · (∇ × A) dτ =
∫
V

A · (∇ × B) dτ +
∮
S
(A × B) · da. (1.61)

1.4 CURVILINEAR COORDINATES

1.4.1 Spherical Coordinates

You can label a point P by its Cartesian coordinates (x, y, z), but sometimes it
is more convenient to use spherical coordinates (r, θ, φ); r is the distance from
the origin (the magnitude of the position vector r), θ (the angle down from the
z axis) is called the polar angle, and φ (the angle around from the x axis) is the
azimuthal angle. Their relation to Cartesian coordinates can be read from
Fig. 1.36:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. (1.62)

Figure 1.36 also shows three unit vectors, r̂, θ̂ , φ̂, pointing in the direction of
increase of the corresponding coordinates. They constitute an orthogonal (mutu-
ally perpendicular) basis set (just like x̂, ŷ, ẑ), and any vector A can be expressed
in terms of them, in the usual way:

A = Ar r̂ + Aθ θ̂ + Aφ φ̂; (1.63)

Ar , Aθ , and Aφ are the radial, polar, and azimuthal components of A. In terms of
the Cartesian unit vectors,

r̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ,
θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ,
φ̂ = − sin φ x̂ + cos φ ŷ,

⎫⎬
⎭ (1.64)

as you can check for yourself (Prob. 1.38). I have put these formulas inside the
back cover, for easy reference.
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But there is a poisonous snake lurking here that I’d better warn you about:
r̂, θ̂ , and φ̂ are associated with a particular point P , and they change direction
as P moves around. For example, r̂ always points radially outward, but “radially
outward” can be the x direction, the y direction, or any other direction, depend-
ing on where you are. In Fig. 1.37, A = ŷ and B = −ŷ, and yet both of them
would be written as r̂ in spherical coordinates. One could take account of this
by explicitly indicating the point of reference: r̂(θ, φ), θ̂(θ, φ), φ̂(θ, φ), but this
would be cumbersome, and as long as you are alert to the problem, I don’t think it
will cause difficulties.9 In particular, do not naïvely combine the spherical compo-
nents of vectors associated with different points (in Fig. 1.37, A + B = 0, not 2r̂,
and A · B = −1, not +1). Beware of differentiating a vector that is expressed in
spherical coordinates, since the unit vectors themselves are functions of position
(∂ r̂/∂θ = θ̂ , for example). And do not take r̂, θ̂ , and φ̂ outside an integral, as I
did with x̂, ŷ, and ẑ in Eq. 1.53. In general, if you’re uncertain about the validity
of an operation, rewrite the problem using Cartesian coordinates, for which this
difficulty does not arise.

An infinitesimal displacement in the r̂ direction is simply dr (Fig. 1.38a), just
as an infinitesimal element of length in the x direction is dx :

dlr = dr. (1.65)

x

y

z

AB
1−1

FIGURE 1.37

9I claimed back at the beginning that vectors have no location, and I’ll stand by that. The vectors
themselves live “out there,” completely independent of our choice of coordinates. But the notation we
use to represent them does depend on the point in question, in curvilinear coordinates.
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On the other hand, an infinitesimal element of length in the θ̂ direction (Fig. 1.38b)
is not just dθ (that’s an angle—it doesn’t even have the right units for a length);
rather,

dlθ = r dθ. (1.66)

Similarly, an infinitesimal element of length in the φ̂ direction (Fig. 1.38c) is

dlφ = r sin θ dφ. (1.67)

Thus the general infinitesimal displacement dl is

dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂. (1.68)

This plays the role (in line integrals, for example) that dl = dx x̂ + dy ŷ + dz ẑ
played in Cartesian coordinates.

The infinitesimal volume element dτ , in spherical coordinates, is the product
of the three infinitesimal displacements:

dτ = dlr dlθ dlφ = r2 sin θ dr dθ dφ. (1.69)

I cannot give you a general expression for surface elements da, since these depend
on the orientation of the surface. You simply have to analyze the geometry for any
given case (this goes for Cartesian and curvilinear coordinates alike). If you are
integrating over the surface of a sphere, for instance, then r is constant, whereas
θ and φ change (Fig. 1.39), so

da1 = dlθ dlφ r̂ = r2 sin θ dθ dφ r̂.

On the other hand, if the surface lies in the xy plane, say, so that θ is constant (to
wit: π/2) while r and φ vary, then

da2 = dlr dlφ θ̂ = r dr dφ θ̂ .

Notice, finally, that r ranges from 0 to ∞, φ from 0 to 2π , and θ from 0 to π

(not 2π—that would count every point twice).10

10Alternatively, you could run φ from 0 to π (the “eastern hemisphere”) and cover the “western hemi-
sphere” by extending θ from π up to 2π . But this is very bad notation, since, among other things,
sin θ will then run negative, and you’ll have to put absolute value signs around that term in volume
and surface elements (area and volume being intrinsically positive quantities).
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Example 1.13. Find the volume of a sphere of radius R.

Solution

V =
∫

dτ =
∫ R

r=0

∫ π

θ=0

∫ 2π

φ=0
r2 sin θ dr dθ dφ

=
(∫ R

0
r2 dr

)(∫ π

0
sin θ dθ

) (∫ 2π

0
dφ

)

=
(

R3

3

)
(2)(2π) = 4

3
π R3

(not a big surprise).

So far we have talked only about the geometry of spherical coordinates. Now
I would like to “translate” the vector derivatives (gradient, divergence, curl, and
Laplacian) into r , θ , φ notation. In principle, this is entirely straightforward: in
the case of the gradient,

∇T = ∂T

∂x
x̂ + ∂T

∂y
ŷ + ∂T

∂z
ẑ,

for instance, we would first use the chain rule to expand the partials:

∂T

∂x
= ∂T

∂r

(
∂r

∂x

)
+ ∂T

∂θ

(
∂θ

∂x

)
+ ∂T

∂φ

(
∂φ

∂x

)
.

The terms in parentheses could be worked out from Eq. 1.62—or rather, the in-
verse of those equations (Prob. 1.37). Then we’d do the same for ∂T/∂y and
∂T/∂z. Finally, we’d substitute in the formulas for x̂, ŷ, and ẑ in terms of r̂, θ̂ ,
and φ̂ (Prob. 1.38). It would take an hour to figure out the gradient in spherical
coordinates by this brute-force method. I suppose this is how it was first done, but
there is a much more efficient indirect approach, explained in Appendix A, which
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has the extra advantage of treating all coordinate systems at once. I described the
“straightforward” method only to show you that there is nothing subtle or mys-
terious about transforming to spherical coordinates: you’re expressing the same
quantity (gradient, divergence, or whatever) in different notation, that’s all.

Here, then, are the vector derivatives in spherical coordinates:

Gradient:

∇T = ∂T

∂r
r̂ + 1

r

∂T

∂θ
θ̂ + 1

r sin θ

∂T

∂φ
φ̂. (1.70)

Divergence:

∇ · v = 1

r2

∂

∂r
(r2vr ) + 1

r sin θ

∂

∂θ
(sin θvθ ) + 1

r sin θ

∂vφ

∂φ
. (1.71)

Curl:

∇ × v = 1

r sin θ

[
∂

∂θ
(sin θvφ) − ∂vθ

∂φ

]
r̂ + 1

r

[
1

sin θ

∂vr

∂φ
− ∂

∂r
(rvφ)

]
θ̂

+ 1

r

[
∂

∂r
(rvθ ) − ∂vr

∂θ

]
φ̂. (1.72)

Laplacian:

∇2T = 1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂2T

∂φ2
. (1.73)

For reference, these formulas are listed inside the front cover.

Problem 1.37 Find formulas for r, θ, φ in terms of x, y, z (the inverse, in other
words, of Eq. 1.62).

Problem 1.38 Express the unit vectors r̂, θ̂ , φ̂ in terms of x̂, ŷ, ẑ (that is, derive•
Eq. 1.64). Check your answers several ways (r̂ · r̂ ?= 1, θ̂ · φ̂

?= 0, r̂ × θ̂
?= φ̂, . . .).

Also work out the inverse formulas, giving x̂, ŷ, ẑ in terms of r̂, θ̂ , φ̂ (and θ, φ).

Problem 1.39•
(a) Check the divergence theorem for the function v1 = r 2r̂, using as your volume

the sphere of radius R, centered at the origin.

(b) Do the same for v2 = (1/r 2)r̂. (If the answer surprises you, look back at
Prob. 1.16.)

Problem 1.40 Compute the divergence of the function

v = (r cos θ) r̂ + (r sin θ) θ̂ + (r sin θ cos φ) φ̂.

Check the divergence theorem for this function, using as your volume the inverted
hemispherical bowl of radius R, resting on the xy plane and centered at the origin
(Fig. 1.40).
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Problem 1.41 Compute the gradient and Laplacian of the function T = r(cos θ +
sin θ cos φ). Check the Laplacian by converting T to Cartesian coordinates and
using Eq. 1.42. Test the gradient theorem for this function, using the path shown
in Fig. 1.41, from (0, 0, 0) to (0, 0, 2).

1.4.2 Cylindrical Coordinates

The cylindrical coordinates (s, φ, z) of a point P are defined in Fig. 1.42. Notice
that φ has the same meaning as in spherical coordinates, and z is the same as
Cartesian; s is the distance to P from the z axis, whereas the spherical coordinate
r is the distance from the origin. The relation to Cartesian coordinates is

x = s cos φ, y = s sin φ, z = z. (1.74)

The unit vectors (Prob. 1.42) are

ŝ = cos φ x̂ + sin φ ŷ,

φ̂ = − sin φ x̂ + cos φ ŷ,

ẑ = ẑ.

⎫⎬
⎭ (1.75)

The infinitesimal displacements are

dls = ds, dlφ = s dφ, dlz = dz, (1.76)
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so

dl = ds ŝ + s dφ φ̂ + dz ẑ, (1.77)

and the volume element is

dτ = s ds dφ dz. (1.78)

The range of s is 0 → ∞, φ goes from 0 → 2π , and z from −∞ to ∞.
The vector derivatives in cylindrical coordinates are:

Gradient:

∇T = ∂T

∂s
ŝ + 1

s

∂T

∂φ
φ̂ + ∂T

∂z
ẑ. (1.79)

Divergence:

∇ · v = 1

s

∂

∂s
(svs) + 1

s

∂vφ

∂φ
+ ∂vz

∂z
. (1.80)

Curl:

∇ × v =
(

1

s

∂vz

∂φ
− ∂vφ

∂z

)
ŝ +

(
∂vs

∂z
− ∂vz

∂s

)
φ̂ + 1

s

[
∂

∂s
(svφ) − ∂vs

∂φ

]
ẑ.

(1.81)

Laplacian:

∇2T = 1

s

∂

∂s

(
s
∂T

∂s

)
+ 1

s2

∂2T

∂φ2
+ ∂2T

∂z2
. (1.82)

These formulas are also listed inside the front cover.

Problem 1.42 Express the cylindrical unit vectors ŝ, φ̂, ẑ in terms of x̂, ŷ, ẑ (that is,
derive Eq. 1.75). “Invert” your formulas to get x̂, ŷ, ẑ in terms of ŝ, φ̂, ẑ (and φ).
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Problem 1.43

(a) Find the divergence of the function

v = s(2 + sin2 φ) ŝ + s sin φ cos φ φ̂ + 3z ẑ.

(b) Test the divergence theorem for this function, using the quarter-cylinder
(radius 2, height 5) shown in Fig. 1.43.

(c) Find the curl of v.

1.5 THE DIRAC DELTA FUNCTION

1.5.1 The Divergence of r̂/r2

Consider the vector function

v = 1

r2
r̂. (1.83)

At every location, v is directed radially outward (Fig. 1.44); if ever there was a
function that ought to have a large positive divergence, this is it. And yet, when
you actually calculate the divergence (using Eq. 1.71), you get precisely zero:

∇ · v = 1

r2

∂

∂r

(
r2 1

r2

)
= 1

r2

∂

∂r
(1) = 0. (1.84)

(You will have encountered this paradox already, if you worked Prob. 1.16.) The
plot thickens when we apply the divergence theorem to this function. Suppose
we integrate over a sphere of radius R, centered at the origin (Prob. 1.38b); the
surface integral is

∮
v · da =

∫ (
1

R2
r̂
)

· (R2 sin θ dθ dφ r̂)

=
(∫ π

0
sin θ dθ

) (∫ 2π

0
dφ

)
= 4π. (1.85)

FIGURE 1.44
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But the volume integral,
∫ ∇ · v dτ , is zero, if we are really to believe Eq. 1.84.

Does this mean that the divergence theorem is false? What’s going on here?
The source of the problem is the point r = 0, where v blows up (and where,

in Eq. 1.84, we have unwittingly divided by zero). It is quite true that ∇ · v = 0
everywhere except the origin, but right at the origin the situation is more com-
plicated. Notice that the surface integral (Eq. 1.85) is independent of R; if the
divergence theorem is right (and it is), we should get

∫
(∇ · v) dτ = 4π for any

sphere centered at the origin, no matter how small. Evidently the entire contribu-
tion must be coming from the point r = 0! Thus, ∇ · v has the bizarre property
that it vanishes everywhere except at one point, and yet its integral (over any
volume containing that point) is 4π . No ordinary function behaves like that. (On
the other hand, a physical example does come to mind: the density (mass per unit
volume) of a point particle. It’s zero except at the exact location of the particle, and
yet its integral is finite—namely, the mass of the particle.) What we have stum-
bled on is a mathematical object known to physicists as the Dirac delta function.
It arises in many branches of theoretical physics. Moreover, the specific problem
at hand (the divergence of the function r̂/r2) is not just some arcane curiosity—it
is, in fact, central to the whole theory of electrodynamics. So it is worthwhile to
pause here and study the Dirac delta function with some care.

1.5.2 The One-Dimensional Dirac Delta Function

The one-dimensional Dirac delta function, δ(x), can be pictured as an infinitely
high, infinitesimally narrow “spike,” with area 1 (Fig. 1.45). That is to say:

δ(x) =
{

0, if x �= 0
∞, if x = 0

}
(1.86)

and11

∫ ∞

−∞
δ(x) dx = 1. (1.87)

x

δ(x)

Area 1

a

FIGURE 1.45

11Notice that the dimensions of δ(x) are one over the dimensions of its argument; if x is a length, δ(x)

carries the units m−1.
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Technically, δ(x) is not a function at all, since its value is not finite at x = 0; in the
mathematical literature it is known as a generalized function, or distribution. It
is, if you like, the limit of a sequence of functions, such as rectangles Rn(x), of
height n and width 1/n, or isosceles triangles Tn(x), of height n and base 2/n
(Fig. 1.46).

If f (x) is some “ordinary” function (that is, not another delta function—in
fact, just to be on the safe side, let’s say that f (x) is continuous), then the product
f (x)δ(x) is zero everywhere except at x = 0. It follows that

f (x)δ(x) = f (0)δ(x). (1.88)

(This is the most important fact about the delta function, so make sure you under-
stand why it is true: since the product is zero anyway except at x = 0, we may as
well replace f (x) by the value it assumes at the origin.) In particular

∫ ∞

−∞
f (x)δ(x) dx = f (0)

∫ ∞

−∞
δ(x) dx = f (0). (1.89)

Under an integral, then, the delta function “picks out” the value of f (x) at x = 0.
(Here and below, the integral need not run from −∞ to +∞; it is sufficient that
the domain extend across the delta function, and −ε to +ε would do as well.)

Of course, we can shift the spike from x = 0 to some other point, x = a
(Fig. 1.47):

xa

δ(x − a)

Area 1

FIGURE 1.47
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δ(x − a) =
{

0, if x �= a
∞, if x = a

}
with

∫ ∞

−∞
δ(x − a) dx = 1. (1.90)

Equation 1.88 becomes

f (x)δ(x − a) = f (a)δ(x − a), (1.91)

and Eq. 1.89 generalizes to

∫ ∞

−∞
f (x)δ(x − a) dx = f (a). (1.92)

Example 1.14. Evaluate the integral

∫ 3

0
x3δ(x − 2) dx .

Solution
The delta function picks out the value of x3 at the point x = 2, so the integral
is 23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3), the
answer would be 0, because the spike would then be outside the domain of inte-
gration.

Although δ itself is not a legitimate function, integrals over δ are perfectly
acceptable. In fact, it’s best to think of the delta function as something that is
always intended for use under an integral sign. In particular, two expressions
involving delta functions (say, D1(x) and D2(x)) are considered equal if 12

∫ ∞

−∞
f (x)D1(x) dx =

∫ ∞

−∞
f (x)D2(x) dx, (1.93)

for all (“ordinary”) functions f (x).

Example 1.15. Show that

δ(kx) = 1

|k|δ(x), (1.94)

where k is any (nonzero) constant. (In particular, δ(−x) = δ(x).)

12I emphasize that the integrals must be equal for any f (x). Suppose D1(x) and D2(x) actually
differed, say, in the neighborhood of the point x = 17. Then we could pick a function f (x) that was
sharply peaked about x = 17, and the integrals would not be equal.
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Solution
For an arbitrary test function f (x), consider the integral∫ ∞

−∞
f (x)δ(kx) dx .

Changing variables, we let y ≡ kx , so that x = y/k, and dx = 1/k dy. If k is
positive, the integration still runs from −∞ to +∞, but if k is negative, then
x = ∞ implies y = −∞, and vice versa, so the order of the limits is reversed.
Restoring the “proper” order costs a minus sign. Thus∫ ∞

−∞
f (x)δ(kx) dx = ±

∫ ∞

−∞
f (y/k)δ(y)

dy

k
= ±1

k
f (0) = 1

|k| f (0).

(The lower signs apply when k is negative, and we account for this neatly by
putting absolute value bars around the final k, as indicated.) Under the integral
sign, then, δ(kx) serves the same purpose as (1/|k|)δ(x):∫ ∞

−∞
f (x)δ(kx) dx =

∫ ∞

−∞
f (x)

[
1

|k|δ(x)

]
dx .

According to the criterion Eq. 1.93, therefore, δ(kx) and (1/|k|)δ(x) are equal.

Problem 1.44 Evaluate the following integrals:

(a)
∫ 6

2 (3x2 − 2x − 1) δ(x − 3) dx .

(b)
∫ 5

0 cos x δ(x − π) dx .

(c)
∫ 3

0 x3δ(x + 1) dx .

(d)
∫ ∞

−∞ ln(x + 3) δ(x + 2) dx .

Problem 1.45 Evaluate the following integrals:

(a)
∫ 2

−2(2x + 3) δ(3x) dx .

(b)
∫ 2

0 (x3 + 3x + 2) δ(1 − x) dx .

(c)
∫ 1

−1 9x2δ(3x + 1) dx .

(d)
∫ a

−∞ δ(x − b) dx .

Problem 1.46

(a) Show that

x
d

dx
(δ(x)) = −δ(x).

[Hint: Use integration by parts.]
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(b) Let θ(x) be the step function:

θ(x) ≡
⎧⎨
⎩

1, if x > 0

0, if x ≤ 0

⎫⎬
⎭ . (1.95)

Show that dθ/dx = δ(x).

1.5.3 The Three-Dimensional Delta Function

It is easy to generalize the delta function to three dimensions:

δ3(r) = δ(x) δ(y) δ(z). (1.96)

(As always, r ≡ x x̂ + y ŷ + z ẑ is the position vector, extending from the origin
to the point (x, y, z).) This three-dimensional delta function is zero everywhere
except at (0, 0, 0), where it blows up. Its volume integral is 1:

∫
all space

δ3(r) dτ =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x) δ(y) δ(z) dx dy dz = 1. (1.97)

And, generalizing Eq. 1.92,
∫

all space
f (r)δ3(r − a) dτ = f (a). (1.98)

As in the one-dimensional case, integration with δ picks out the value of the func-
tion f at the location of the spike.

We are now in a position to resolve the paradox introduced in Sect. 1.5.1.
As you will recall, we found that the divergence of r̂/r2 is zero everywhere ex-
cept at the origin, and yet its integral over any volume containing the origin is a
constant (to wit: 4π ). These are precisely the defining conditions for the Dirac
delta function; evidently

∇ ·
(

r̂
r2

)
= 4πδ3(r). (1.99)

More generally,

∇ ·
( r̂
r2

)
= 4πδ3(r), (1.100)

where, as always, r is the separation vector: r ≡ r − r′. Note that differentiation
here is with respect to r, while r′ is held constant. Incidentally, since

∇
(

1

r

)
= − r̂

r2 (1.101)
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(Prob. 1.13b), it follows that

∇2 1

r = −4πδ3(r). (1.102)

Example 1.16. Evaluate the integral

J =
∫

V
(r2 + 2)∇ ·

(
r̂
r2

)
dτ,

where V is a sphere13 of radius R centered at the origin.

Solution 1
Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral:

J =
∫

V
(r2 + 2)4πδ3(r) dτ = 4π(0 + 2) = 8π.

This one-line solution demonstrates something of the power and beauty of the
delta function, but I would like to show you a second method, which is much
more cumbersome but serves to illustrate the method of integration by parts
(Sect. 1.3.6).

Solution 2
Using Eq. 1.59, we transfer the derivative from r̂/r2 to (r2 + 2):

J = −
∫

V

r̂
r2

· [∇(r2 + 2)] dτ +
∮

S
(r2 + 2)

r̂
r2

· da.

The gradient is

∇(r2 + 2) = 2r r̂,

so the volume integral becomes
∫

2

r
dτ =

∫
2

r
r2 sin θ dr dθ dφ = 8π

∫ R

0
r dr = 4π R2.

Meanwhile, on the boundary of the sphere (where r = R),

da = R2 sin θ dθ dφ r̂,

so the surface integral is∫
(R2 + 2) sin θ dθ dφ = 4π(R2 + 2).

13In proper mathematical jargon, “sphere” denotes the surface, and “ball” the volume it encloses.
But physicists are (as usual) sloppy about this sort of thing, and I use the word “sphere” for both
the surface and the volume. Where the meaning is not clear from the context, I will write “spherical
surface” or “spherical volume.” The language police tell me that the former is redundant and the latter
an oxymoron, but a poll of my physics colleagues reveals that this is (for us) the standard usage.
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Putting it all together,

J = −4π R2 + 4π(R2 + 2) = 8π,

as before.

Problem 1.47

(a) Write an expression for the volume charge density ρ(r) of a point charge q at
r′. Make sure that the volume integral of ρ equals q.

(b) What is the volume charge density of an electric dipole, consisting of a point
charge −q at the origin and a point charge +q at a?

(c) What is the volume charge density (in spherical coordinates) of a uniform, in-
finitesimally thin spherical shell of radius R and total charge Q, centered at the
origin? [Beware: the integral over all space must equal Q.]

Problem 1.48 Evaluate the following integrals:

(a)
∫
(r 2 + r · a + a2)δ3(r − a) dτ , where a is a fixed vector, a is its magnitude,

and the integral is over all space.

(b)
∫
V |r − b|2δ3(5r) dτ , where V is a cube of side 2, centered on the origin, and

b = 4 ŷ + 3 ẑ.

(c)
∫
V

[
r 4 + r 2(r · c) + c4

]
δ3(r − c) dτ , where V is a sphere of radius 6 about the

origin, c = 5 x̂ + 3 ŷ + 2 ẑ, and c is its magnitude.

(d)
∫
V r · (d − r)δ3(e − r) dτ , where d = (1, 2, 3), e = (3, 2, 1), and V is a sphere

of radius 1.5 centered at (2, 2, 2).

Problem 1.49 Evaluate the integral

J =
∫
V

e−r

(
∇ · r̂

r 2

)
dτ

(where V is a sphere of radius R, centered at the origin) by two different methods,
as in Ex. 1.16.

1.6 THE THEORY OF VECTOR FIELDS

1.6.1 The Helmholtz Theorem

Ever since Faraday, the laws of electricity and magnetism have been expressed
in terms of electric and magnetic fields, E and B. Like many physical laws,
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these are most compactly expressed as differential equations. Since E and B are
vectors, the differential equations naturally involve vector derivatives: divergence
and curl. Indeed, Maxwell reduced the entire theory to four equations, specifying
respectively the divergence and the curl of E and B.

Maxwell’s formulation raises an important mathematical question: To what
extent is a vector function determined by its divergence and curl? In other words,
if I tell you that the divergence of F (which stands for E or B, as the case may be)
is a specified (scalar) function D,

∇ · F = D,

and the curl of F is a specified (vector) function C,

∇ × F = C,

(for consistency, C must be divergenceless,

∇ · C = 0,

because the divergence of a curl is always zero), can you then determine the
function F?

Well. . . not quite. For example, as you may have discovered in Prob. 1.20, there
are many functions whose divergence and curl are both zero everywhere—the triv-
ial case F = 0, of course, but also F = yz x̂ + zx ŷ + xy ẑ, F = sin x cosh y x̂ −
cos x sinh y ŷ, etc. To solve a differential equation you must also be supplied with
appropriate boundary conditions. In electrodynamics we typically require that
the fields go to zero “at infinity” (far away from all charges).14 With that ex-
tra information, the Helmholtz theorem guarantees that the field is uniquely
determined by its divergence and curl. (The Helmholtz theorem is discussed in
Appendix B.)

1.6.2 Potentials

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the
gradient of a scalar potential (V ):

∇ × F = 0 ⇐⇒ F = −∇V . (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the follow-
ing theorem:

Theorem 1
Curl-less (or “irrotational”) fields. The following conditions are equivalent
(that is, F satisfies one if and only if it satisfies all the others):

14In some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric
field of an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary
conditions do not apply, and one must invoke symmetry arguments to determine the fields uniquely.
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(a) ∇ × F = 0 everywhere.

(b)
∫ b

a F · dl is independent of path, for any given end points.

(c)
∮

F · dl = 0 for any closed loop.

(d) F is the gradient of some scalar function: F = −∇V .

The potential is not unique—any constant can be added to V with impunity, since
this will not affect its gradient.

If the divergence of a vector field (F) vanishes (everywhere), then F can be
expressed as the curl of a vector potential (A):

∇ · F = 0 ⇐⇒ F = ∇ × A. (1.104)

That’s the main conclusion of the following theorem:

Theorem 2
Divergence-less (or “solenoidal”) fields. The following conditions are equivalent:

(a) ∇ · F = 0 everywhere.

(b)
∫

F · da is independent of surface, for any given boundary line.

(c)
∮

F · da = 0 for any closed surface.

(d) F is the curl of some vector function: F = ∇ × A.

The vector potential is not unique—the gradient of any scalar function can be
added to A without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save
for the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will
come later. Incidentally, in all cases (whatever its curl and divergence may be) a
vector field F can be written as the gradient of a scalar plus the curl of a vector:15

F = −∇V + ∇ × A (always). (1.105)

Problem 1.50

(a) Let F1 = x2 ẑ and F2 = x x̂ + y ŷ + z ẑ. Calculate the divergence and curl of
F1 and F2. Which one can be written as the gradient of a scalar? Find a scalar
potential that does the job. Which one can be written as the curl of a vector?
Find a suitable vector potential.

15In physics, the word field denotes generically any function of position (x, y, z) and time (t). But in
electrodynamics two particular fields (E and B) are of such paramount importance as to preempt the
term. Thus technically the potentials are also “fields,” but we never call them that.
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(b) Show that F3 = yz x̂ + zx ŷ + xy ẑ can be written both as the gradient of a
scalar and as the curl of a vector. Find scalar and vector potentials for this func-
tion.

Problem 1.51 For Theorem 1, show that (d) ⇒ (a), (a) ⇒ (c), (c) ⇒ (b), (b) ⇒ (c),
and (c) ⇒ (a).

Problem 1.52 For Theorem 2, show that (d) ⇒ (a), (a) ⇒ (c), (c) ⇒ (b), (b) ⇒ (c),
and (c) ⇒ (a).

Problem 1.53

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a
scalar? Find a scalar function that does the job.

(b) Which can be expressed as the curl of a vector? Find such a vector.

More Problems on Chapter 1

Problem 1.54 Check the divergence theorem for the function

v = r 2 cos θ r̂ + r 2 cos φ θ̂ − r 2 cos θ sin φ φ̂,

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure
you include the entire surface. [Answer: π R4/4]

Problem 1.55 Check Stokes’ theorem using the function v = ay x̂ + bx ŷ (a and
b are constants) and the circular path of radius R, centered at the origin in the xy
plane. [Answer: π R2(b − a)]

Problem 1.56 Compute the line integral of

v = 6 x̂ + yz2 ŷ + (3y + z) ẑ

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’
theorem. [Answer: 8/3]

Problem 1.57 Compute the line integral of

v = (r cos2 θ) r̂ − (r cos θ sin θ) θ̂ + 3r φ̂

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coor-
dinates). Do it either in cylindrical or in spherical coordinates. Check your answer,
using Stokes’ theorem. [Answer: 3π/2]

x

y

z

R

FIGURE 1.48

x
y

z

2

1

1

FIGURE 1.49

x

z (0,1,2)

(0,1,0)

(1,0,0) y

FIGURE 1.50



56 Chapter 1 Vector Analysis

x

y

z
(0,0,a)

(0,2a,0)
(a,0,0)

FIGURE 1.51

x
y

z

R 30º

FIGURE 1.52

Problem 1.58 Check Stokes’ theorem for the function v = y ẑ, using the triangular
surface shown in Fig. 1.51. [Answer: a2]

Problem 1.59 Check the divergence theorem for the function

v = r 2 sin θ r̂ + 4r 2 cos θ θ̂ + r 2 tan θ φ̂,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface
is spherical, with radius R and centered at the origin). [Answer: (π R4/12)(2π +
3
√

3)]

Problem 1.60 Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (v = ∇T , in
this case). Show that the result is consistent with what you already knew about
second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show
that the result is consistent with what you already knew.

Problem 1.61 Although the gradient, divergence, and curl theorems are the fun-•
damental integral theorems of vector calculus, it is possible to derive a number of
corollaries from them. Show that:

(a)
∫
V (∇T ) dτ = ∮

S T da. [Hint: Let v = cT , where c is a constant, in the diver-
gence theorem; use the product rules.]

(b)
∫
V (∇ × v) dτ = − ∮

S v × da. [Hint: Replace v by (v × c) in the divergence
theorem.]

(c)
∫
V [T ∇2U + (∇T ) · (∇U )] dτ = ∮

S(T ∇U ) · da. [Hint: Let v = T ∇U in the
divergence theorem.]

(d)
∫
V (T ∇2U − U∇2T ) dτ = ∮

S(T ∇U − U∇T ) · da. [Comment: This is some-
times called Green’s second identity; it follows from (c), which is known as
Green’s identity.]

(e)
∫
S ∇T × da = − ∮

P T dl. [Hint: Let v = cT in Stokes’ theorem.]
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Problem 1.62 The integral•

a ≡
∫
S

da (1.106)

is sometimes called the vector area of the surface S. If S happens to be flat, then
|a| is the ordinary (scalar) area, obviously.

(a) Find the vector area of a hemispherical bowl of radius R.

(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.61a.]

(c) Show that a is the same for all surfaces sharing the same boundary.

(d) Show that

a = 1
2

∮
r × dl, (1.107)

where the integral is around the boundary line. [Hint: One way to do it is to draw
the cone subtended by the loop at the origin. Divide the conical surface up into
infinitesimal triangular wedges, each with vertex at the origin and opposite side dl,
and exploit the geometrical interpretation of the cross product (Fig. 1.8).]

(e) Show that ∮
(c · r) dl = a × c, (1.108)

for any constant vector c. [Hint: Let T = c · r in Prob. 1.61e.]

Problem 1.63•
(a) Find the divergence of the function

v = r̂
r
.

First compute it directly, as in Eq. 1.84. Test your result using the divergence theo-
rem, as in Eq. 1.85. Is there a delta function at the origin, as there was for r̂/r 2? What
is the general formula for the divergence of rn r̂? [Answer: ∇ · (rn r̂) = (n + 2)rn−1,
unless n = −2, in which case it is 4πδ3(r); for n < −2, the divergence is ill-defined
at the origin.]

(b) Find the curl of rn r̂. Test your conclusion using Prob. 1.61b. [Answer:
∇ × (rn r̂) = 0]

Problem 1.64 In case you’re not persuaded that ∇2(1/r) = −4πδ3(r) (Eq. 1.102
with r′ = 0 for simplicity), try replacing r by

√
r 2 + ε2, and watching what happens

as ε → 0.16 Specifically, let

D(r, ε) ≡ − 1

4π
∇2 1√

r 2 + ε2
.

16This problem was suggested by Frederick Strauch.
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To demonstrate that this goes to δ3(r) as ε → 0:

(a) Show that D(r, ε) = (3ε2/4π)(r 2 + ε2)−5/2.

(b) Check that D(0, ε) → ∞, as ε → 0.

(c) Check that D(r, ε) → 0, as ε → 0, for all r �= 0.

(d) Check that the integral of D(r, ε) over all space is 1.


