Physics 333 – Fall 2021 Due October 29.

Homework 08 - REV B

Instructions:

Each problem should begin at the top of a new sheet of paper. The final answer (numerical or symbolic) should be boxed (or written in a different color). (For proofs, this isn't reasonable, so don't do it.) Each problem should have your name on the left and, below it, the *SPN*, circled. Problems should (usually) include a 3x3 inch sketch and begin with the general equations and the assumptions you make.

SPN 8–01. Do a sketch that includes a pinto-bean charge distribution, $\vec{r_T}$, $\vec{r_S}$, ν , and α . Then make a Taylor expansion of $1/\nu$ and show that you end up with

$$1/\mathcal{V} = \frac{1}{r_T} \Sigma(\frac{r_S}{r_T})^n P_n(\cos\alpha) \tag{1}$$

explicitly for the case n=0,1,2 and 3. You do NOT need to prove the case for ALL n.

HINTS:

- 1. I recommend defining $\Delta = \frac{r_S}{r_T}$ so that you do not have to write so much.
- 2. I also recommend defining $\epsilon = \Delta^2 2\Delta \cos\alpha$ and writing the Taylor series in terms of ϵ .
- 3. Do the expansion of the powers of ϵ and then group all the terms in Δ , Δ^2 and Δ^3 . This will give you the needed Legendre polynomials (P_n)
- 4. You do not have to use ϵ and Δ . Feel free to make up your own notation. Use Hebrew, Arabic or Russian letters or make up a letter or borrow one from Dr. Seuss's "On Beyond Zebra".

SPN 8–02 – **An induced dipole.** Rederive the potential of a conducting sphere of radius R placed at the origin in an external field $\vec{E} = E_0 \hat{z}$. You may follow the steps in Example 3.8. Justify in your own words every step in the math (and fill in intermediate steps if needed.)

SPN 8–03. – Conceptual question, section 4.1

Give an example of a molecule that requires a polarizability tensor. Why does it need one? (As opposed to a simple constant).

SPN 8–04: Atomic polarizability. Assume that the model of an atom as a uniform sphere of charge is correct. Table 4.1 gives the atomic polarizability of several atoms. What is the radius of a Hydrogen atom? A Cesium atom?

SPN 8–05: Polar molecules. A water molecule is sketched in Figure 4.4. The angle between the two O-H bonds is given, but the length of the bond is not. Take the published value that $d_{O-H} = 0.95$ Å. Calculate the dipole moment of water. (Note: Griffith's quotes a value which is somewhat different than what you will get.)

SPN 8–06. *–Conceptual question, section 4.2* Is a bound charge density "real"? Discuss.

SPN 8–07: Force between charge and polarized atom. A free proton (particle A) is located 1 Å from a neutral hydrogen atom (particle B). Particle A thus induces polarization in the hydrogen atom. Calculate the attractive force between A and B. There are two ways to do this problem, described below. Do it both ways.

- a: Use the published value of $\alpha_{Hydrogen}$ to calculate p_B . You know the field of a dipole, so use that to calculate the force on A.
- **b:** Use the same value of p_B together with equation 4.5 for calculate the force on *B*. Of course $F_{AB} = F_{BA}$.

SPN 8–08. –Conceptual question, section 4.3

Since both "free" and "bound" charges affect the E-field, why should we even bother to talk about the difference between them?

SPN 8–09. –Polarization

A polarized dielectric cube of side a is centered at the origin. It has no free charge on it or inside. It has a Polarization vector inside that varies as $\vec{P} = (P_0 x^2 z) \hat{z}$. $a = 4 \ cm$ and $P_0 = 3 \times 10^{-3}$

- **a:** Sketch the cube and the coordinate axes.
- **b:** What units does P_0 need to have to make \vec{P} have the proper units?
- c: What is the bound surface charge density σ_B on each surface?
- **d:** What is the total surface charge on each surface?
- e: What is the bound volume charge density ρ_B inside the cube?
- **f:** What is the total bound volume charge inside the cube?

SPN 8-10. -Conceptual question, section 4.4

- (a) You are told by a somewhat confused chemist that the "permittivity thingy" of unobtanium is 2×10^{-11} SI units. By "thingy" do they mean *Permittivity* or *Relative permittivity* ... and how do you know?
- (b) Whichever one it was in part a, what's the value of the other one?

SPN 8–11. Complete the following table. For each symbol, write the technical name (e.g. α ="polarizability") as well as the correct units. This ought to help organize the material in your head better. It will make good exam review.

Symbol	Description	SI Units
ϵ_0		
ε		
ϵ_r		
Ye		
α		
\vec{p}		
\vec{P}		
\vec{E}		
\vec{D}		