

Problem 5: Radiation from a dipole antenna: Observed at R_{1} (on the ground), and R_{2} (at the height h of the tower.)

Physics 3034 - Spring 2024: Due April 19.

Homework 07 - Rev A

SPN 7-01 - The D'Alembertian and Maxwell's equations.
Do Griffiths 10.1.

SPN 7-02 - Fields from Potentials.
Do Griffiths 10.3.

SPN 7-03 - Gauges.
Do Griffiths 10.5.

SPN 7-04 - Larmor power formula
Beginning with equations 11.18 and 11.19, calculate (Equation 11.20 ... it's not hard.). After you have 11.20 explain how get to 11.21 , then explicitly do the integration over θ to arrive at 11.22

SPN 7-05 - Dipole Radiation.
A dipole antenna of length d (shown in blue in the figure) has a maximum dipole moment of p_{0}. It is transmitting at frequency f. It is mounted atop a tower of height h. You observe it from the ground at a location R_{1} a distance s from the tower base and receive an average power per unit area $<S_{1}>$.
a What power $<S_{2}>$ will you receive at the point R_{2} which is at the same height h as the tower?
b What Electric field will you measure at R_{2} ? (give magnitude and direction in terms of cartesian coordinates)
c What Magnetic field will you measure at R_{2} ? (give magnitude and direction in terms of cartesian coordinates)
d What is the direction of electric and magnetic fields at R_{1} (in cartesian coordinates)
e How about direction and magnitude of \vec{A} ?
f If $f=100 \mathrm{MHz}, s=300 m, h=100 m, q=1 \mu C$ and the received power at R_{2} is ten $W a t t s / m^{2}$, express answers to a, b, and c numerically.
g What is the separation between the charges in the dipole? What is the maximum current going into the transmitter? (you should get numbers).

