
import	numpy	as	np

def	easy_mat(data,	rows=2,	cols=2):
				"""	Makes	it	easy	to	create	a	matrix	w/o	typing	so	many	[]!
				Pass	this	function	a	tuple	or	list,	optionally	rows/columns

				Example:
				m	=	easy_mat([1,	2,	3,	4])
				
				"""
				array	=	np.array(data)
				matrix	=	array.reshape(rows,	cols)
				return(matrix)

def	pretty_print(a):
				"""	You	don't	really	need	to	use	this.
				However	it	makes	a	matrix	look	more	like	a	matrix
				does	in	Matlab.
				
				'Pretty	printing'	is	an	old	programming	term	that	just	means
				printing	something	in	a	more	human	friendly	format.		It	is	left
				over	from	the	dinosaur	age	when	computer	
				printouts	were	quite	ugly	by	default.
				
				Example:
								m=	ezmat([42,	3.14,	69,	12])
								pretty_print(m)
								Matrix	follows:
												42.000				3.140	
												69.000			12.000
				"""
				print('Matrix	follows:')
				if	not	isinstance(a,np.ndarray):
								print('WARNING:	Pretty	print	will	not	work	except	on	arrays.')
				for	row	in	a:
												for	col	in	row:
																print("{:8.3f}".format(col),	end="	")
												print("")

def	trans(L):
				"""
				L:	translation	distance	(m)
				"""
				T	=	easy_mat([1,	L,		0,	1])				
				return	T

def	thick(Rf,	t,	Rb,	nE,	nL):
				"""
				Rf:	radius	of	front	surface	(+	convex	to	left)
				t:		lens	thickness	(0	for	thin	lens	approx)
				Rb:	radius	of	back	surface	(+	to	left	convex)
				nE:	1				n	of	environment
				nL:	1.5		n	of	lens	material
"""				
				R1	=	easy_mat([1,	0,	1/Rf*(nE/nL-1),	nE/nL])

1

				T1	=	easy_mat([1,	t,		0,	1])
				R2	=	easy_mat([1,	0,	1/Rb*(nL/nE-1),	nL/nE])
				S	=	R2@T1@R1
				return	S

def	compose_thick(objct,	image):
				"""
				This	is	the	part	that	you	fill	out.		Replace	all	the	question	marks
				appropriately.		
				
				objct:	The	distance	(in	meters)	to	the	object.		A	positive
								number	means	object	is	to	left	of	first	lens.
				image:	The	distance	(in	meters)	to	the	image.		This	is	something
				you	have	to	guess.		Keep	changing	it	until	the	
				absolute	value	of	"B"	in	the	matrix	is	<0.001.
				When	it	is,	then	"image"	will	be	the	image	distance.
				T:	for	translation
				R:	for	refraction
				S:	for	"System	matrix"
				"""

				pass
#	pass	means	do	not	do	anything
#	This	is	the	function	you	have	to	write.		It's	like
#	compose_thin,	but	just	will	have	more	matrices

def	compose_thin(objct,	image):
				"""
				I	am	doing	this	one	for	you	so	that	you	start	out	with
				working	code.		You	dont	need	this	function	for	the	actual	problem.
				Use	compose_thick	instead.
				T:	for	translation
				R:	for	refraction
				S:	for	"System	matrix"
				"""
				T1	=	trans(L=objct)
				R1	=	thick(Rf=0.06,t=0,Rb=-0.06,nE=1.5,nL=2.5)
				T2	=	trans(L=image)
				S	=	T2@R1@T1
				return	S

if	__name__	==	'__main__':
#				main()
				S1	=	compose_thin(0.1,	0.2)
				pretty_print(S1)
				S2	=	compose_thin(0.1,	0.0815)
				pretty_print(S2)
				S3	=	compose_thin(0.07,	0.126)
				pretty_print(S3)
									
				

2

