
Matrix Methods in Paraxial Optics

INTRODUCTION

This chapter deals with methods of analyzing optical systems when they be-
come complex, involving a number of refracting and/or reflecting elements in
trainlike fashion. Beginning with a description of a single thick lens in terms
of its cardinal points, the discussion proceeds to an analysis of a train of opti-
cal elements by means of multiplication of matrices representing the el-
ementary refractions or reflections involved in the train. In this way, a system
matrix for the entire optical system can be found that is related to the same car-
dinal points characterizing the thick lens. Finally, computer ray-tracing methods
for tracing a given ray of light through an optical system are briefly described.

1 THE THICK LENS

Consider a spherical thick lens, that is, a lens whose thickness along its optical
axis cannot be ignored without leading to serious errors in analysis. Just when a
lens moves from the category of thin to thick clearly depends on the accuracy 
required. The thick lens can be treated by methods you should already be famil-
iar with. The glass medium is bounded by two spherical refracting surfaces. The
image of a given object, formed by refraction at the first surface, becomes the 
object for refraction at the second surface. The object distance for the second
surface takes into account the thickness of the lens. The image formed by the sec-
ond surface is then the final image due to the action of the composite thick lens.

The thick lens can also be described in a way that allows graphical de-
termination of images corresponding to arbitrary objects, much like the ray
rules for a thin lens. This description, in terms of the so-called cardinal points
of the lens, is useful also because it can be applied to more complex optical
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Matrix Methods in Paraxial Optics

1These “planes” are actually slightly curved surfaces that can be considered plane in the paraxial
approximation.

systems, as will become evident in this chapter. Thus, even though we are at
present interested in a single thick lens, the following description is applica-
ble to an arbitrary optical system that we can imagine is contained within the
outlines of the thick lens.

There are six cardinal points on the axis of a thick lens, from which its
imaging properties can be deduced. Planes1 normal to the axis at these points
are called the cardinal planes. The six cardinal points (see Figures 1 and 2) con-
sist of the first and second system focal points ( and ), which are already
familiar; the first and second principal points ( and ); and the first and
second nodal points ( and ).

A ray from the first focal point, is rendered parallel to the axis 
(Figure 1a), and a ray parallel to the axis is refracted by the lens through the
second focal point, (Figure 1b). The extensions of the incident and resultant
rays in each case intersect, by definition, in the principal planes, and these cross
the axis at the principal points, and If the thick lens were a single thin
lens, the two principal planes would coincide at the vertical line that is usually
drawn to represent the lens. Principal planes in general do not coincide and
may even be located outside the optical system itself. Once the locations of the
principal planes are known, accurate ray diagrams can be drawn. The usual
rays, determined by the focal points, change direction at their intersections with
the principal planes, as in Figure 1. The third ray usually drawn for thin-lens 
diagrams is one through the lens center, undeviated and negligibly displaced.
The nodal points of a thick lens, or of any optical system, permit the correction
to this ray, as shown in Figure 2. Any ray directed toward the first nodal point,

emerges from the optical system parallel to the incident ray, but displaced
so that it appears to come from the second nodal point on the axis, 

The positions of all six cardinal points are indicated in Figure 3. Dis-
tances are directed, positive or negative, by a sign convention that makes dis-
tances directed to the left negative and distances to the right positive. Notice
that for the thick lens, the distances r and s determine the positions of the
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Figure 1 Illustration of the (a) first (PP1)
and (b) second (PP2) principal planes of an
optical system. The principal points H1 and
H2 are also shown.
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Figure 2 Illustration of the nodal points (N1
and N2) and nodal planes (NP1 and NP2) of
an optical system.
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Figure 3 Symbols used to signify the car-
dinal points and locations for a thick lens.
Axial points include focal points (F), ver-
tices (V), principal points (H), and nodal
points (N). Directed distances separating
their corresponding planes are defined in
the drawing.
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principal points relative to the vertices and while and determine focal
point positions relative to the principal points and respectively. Note
carefully that these focal points are not measured from the vertices of the lens.

We summarize the basic equations for the thick lens without proof.
Although the derivations involve simple algebra and geometry, they are
rather arduous. We shall be content to await the matrix approach later in this
chapter as a simpler way to justify these equations, and even then some of the
work is relegated to the problems.

Utilizing the symbols defined in Figure 3, the focal length is given by

(1)

and the focal length is conveniently expressed in terms of by

(2)

where n, and are the refractive indices of the three regions indicated in
Figure 3.

Notice that the two-focal lengths have the same magnitude if the lens is
surrounded by a single refractive medium, so that The principal
planes can be located next using

(3)

The positions of the nodal points are given by

(4)

Image and object distances and lateral magnification are related by

(5)

as long as the distances and as well as focal lengths, are measured rela-
tive to corresponding principal planes. The signs for and follow the usual
sign convention. In the ordinary case of a lens in air, with notice
that and First and second principal points are superimposed
over corresponding nodal points. Also, first and second focal lengths are
equal in magnitude, and the usual thin lens equations,

(6)

are valid. Here we have noted that 

Example 1

Determine the focal lengths and the principal points for a 4-cm thick, bi-
convex lens with refractive index of 1.52 and radii of curvature of 25 cm,
when the lens caps the end of a long cylinder filled with water 1n = 1.332.
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Solution

Use the equations for the thick lens in the order given:

or to the left of the first principal plane. Then

to the right of the second principal plane, and

Thus the principal point is situated 0.715 cm to the right of the left ver-
tex of the lens, and is situated 2.60 cm to the left of the right vertex 

2 THE MATRIX METHOD

When the optical system consists of several elements—for example, the four or
five lenses that constitute a photographic lens—we need a systematic approach
that facilitates analysis. As long as we restrict our analysis to paraxial rays,
this systematic approach is well handled by the matrix method. We now pre-
sent a treatment of image formation that employs matrices to describe
changes in the height and angle of a ray as it makes its way by successive re-
flections and refractions through an optical system. We show that, in the parax-
ial approximation, changes in height and direction of a ray can be expressed by
linear equations that make this matrix approach possible. By combining matri-
ces that represent individual refractions, reflections, and translations, a given
optical system may be represented by a single matrix, from which the essential
properties of the composite optical system may be deduced. The method lends
itself to computer techniques for tracing a ray through an optical system of
arbitrary complexity.

Figure 4 shows the progress of a single ray through an arbitrary opti-
cal system. The ray is described at distance from the first refracting sur-
face in terms of its height and slope angle relative to the optical axis.
Changes in angle occur at each refraction, such as at points 1 through 5, and at
each reflection, such as at point 6. The height of the ray changes during trans-
lations between these points. We look for a procedure that will allow us to cal-
culate the height and slope angle of the ray at any point in the optical system,
for example, at point T, a distance from the mirror. In other words, x7
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Figure 4 Steps in tracing a ray through an
optical system. Progress of a ray can be 
described by changes in its elevation and
direction.
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given the input data at point 0, we wish to predict values of at
point 7 as output data.

3 THE TRANSLATION MATRIX

Consider a simple translation of the ray in a homogeneous medium, as in 
Figure 5. Let the axial progress of the ray be L, as shown, such that at point 1, the
elevation and direction of the ray are given by “coordinates” and 
respectively. Evidently,

These equations may be put into an ordered form,

(7)

where the paraxial approximation has been used. In matrix nota-
tion, the two equations are written

(8)

The ray-transfer matrix represents the effect of the translation on a ray.
The input data is modified by the ray-transfer matrix to yield the cor-
rect output data 

4 THE REFRACTION MATRIX

Consider next the refraction of a ray at a spherical interface separating
media of refractive indices n and as shown in Figure 6. We need to 
relate the ray coordinates after refraction to those before refrac-
tion, Since refraction occurs at a point, there is no change in elevation,
and 

The angle on the other hand, is, by inspection of Figure 6 and the use
of small angle approximations,
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Incorporating the paraxial form of Snell’s law,

we have

or

The appropriate linear equations are then

(9)

or, in matrix form,

(10)

Here, we use a sign convention for R that should be familiar to you. 
If the surface is instead concave, R is negative. Furthermore, allowing
yields the appropriate refraction matrix for a plane interface.

5 THE REFLECTION MATRIX

Finally, consider reflection at a spherical surface, illustrated in Figure 7. In the
case considered, a concave mirror, R, is negative. We need to add a sign con-
vention for the angles that describe the ray directions. Angles are considered
positive for all rays pointing upward, either before or after a reflection; angles
for rays pointing downward are considered negative. The sign convention is
summarized in the inset of Figure 7.

From the geometry of Figure 7, with both and positive,
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where we have made the usual small angle approximations. Using these rela-
tions together with the law of reflection, 

and so the two desired linear equations are

(11)

In matrix form,

(12)

6 THICK-LENS AND THIN-LENS 
MATRICES

We construct now a matrix that represents the action of a thick lens on a ray
of light. For generality, we assume different media on opposite sides of the
lens, having refractive indices n and as shown in Figure 8. In traversing the
lens, the ray undergoes two refractions and one translation, steps for which
we have already derived matrices. Referring to Figure 8, where we have cho-
sen for simplicity a lens with positive radii of curvature, we may write, 
symbolically,

and

Telescoping these matrix equations results in

Evidently the entire thick lens can be represented by a matrix
Recalling that the multiplication of matrices is associative but not commutative,
the descending order must be maintained. The individual matrices operate on
the light ray in the same order in which the corresponding optical actions influ-
ence the light ray as it traverses the system. Generalizing, the matrix equation
representing any number N of translations, reflections, and refractions is given by
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and the ray-transfer matrix representing the entire optical system is

(14)

We apply this result first to the thick lens of Figure 8, whose index is and
whose thickness for paraxial rays is t. The correct approximation for a thin
lens is then made by allowing Letting represent a refraction matrix
and represent a translation matrix, the matrix for the thick lens is, by 
Eq. (14), the composite matrix

or

(15)

For the case where t is negligible and where the lens is surrounded by
the same medium on either side 

(16)

Simplifying Eq. (16),

(17)

The matrix element in the first column, second row, may be expressed in
terms of the focal length of the lens, by the lensmaker’s formula,

so that the thin-lens ray-transfer matrix is simply
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7 SYSTEM RAY-TRANSFER MATRIX

By combining appropriate individual matrices in the proper order, according
to Eq. (14), it is possible to express any optical system by a single 
matrix, which we call the system matrix.

2 * 2
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TABLE 1 SUMMARY OF SOME SIMPLE RAY-TRANSFER MATRICES

As usual, f is taken as positive for a convex lens and negative for a concave
lens. This matrix and those previously derived are summarized for quick ref-
erence in Table 1.
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Example 2

Find the system matrix for the thick lens of Figure 8, whose matrix 
before multiplication is expressed by Eq. (15), and specify the thick lens
exactly by choosing and

Solution

The elements of this composite ray-transfer matrix, usually referred to in the
symbolic form

describe the relevant properties of the optical system, as we shall see. Be
aware that the particular values of the matrix elements of a system depend
on the location of the ray at input and output. In the case of the thick lens
just calculated, the input plane was chosen at the left surface of the lens,
and the output plane was chosen at its right surface. If each of these planes
is moved some distance from the lens, the system matrix will also include an
initial and a final translation matrix incorporating these distances. The ma-
trix elements change and the system matrix now represents this enlarged
“system.” In any case, the determinant of the system matrix has a very use-
ful property:

(19)

where and are the refractive indices of the initial and final media of the
optical system. The proof of this assertion follows upon noticing first that the
determinant of all the individual ray-transfer matrices in Table 1 have values
of either or unity and then making use of the theorem2 that the determi-
nant of a product of matrices is equal to the product of the determinants. Sym-
bolically, if then

(20)

In forming this product, using determinants of ray-transfer matrices, all in-
termediate refractive indices cancel, and we are left with the ratio as
stated in Eq. (19). Most often, as in the case of the thick-lens example,
and both refer to air, and Det (M) is unity. The condition expressed by
Eq. (19) is useful in checking the correctness of the calculations that pro-
duce a system matrix.
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R1 = 45 cm, R2 = 30 cm, t = 5 cm, nL = 1.60,

2The theorem can easily be verified for the product of two matrices and generalized by induc-
tion to the product of any number of matrices. Formal proofs can be found in any standard textbook
on matrices and determinants, for example, E. T. Browne, Introduction to the Theory of Determinants
and Matrices (Chapel Hill: University of North Carolina, 1958).
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8 SIGNIFICANCE OF SYSTEM 
MATRIX ELEMENTS

We examine now the implications that follow when each of the matrix ele-
ments in turn is zero. In symbolic form, we have, from Eq. (13),

(21)

which is equivalent to the algebraic relations

(22)

1. In this case, independent of Since is fixed, this
means that all rays leaving a point in the input plane will have the same
angle at the output plane, independent of their angles at input. As
shown in Figure 9a, the input plane thus coincides with the first focal
plane of the optical system.

2. This case is much like the previous one. Here implies
that is independent of so that all rays departing the input plane at
the same angle, regardless of altitude, arrive at the same altitude at
the output plane. As shown in Figure 9b, the output plane thus functions
as the second focal plane.

3. Then independent of Thus, all rays from a point at
height in the input plane arrive at the same point of height in the
output plane. The points are then related as object and image points, as
shown in Figure 9c, and the input and output planes correspond to 
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Figure 9 Diagrams illustrating the significance of the vanishing of specific system
matrix elements. (a) When the input plane corresponds to the first focal
plane of the optical system. (b) When the output plane corresponds to the
second focal plane of the optical system. (c) When the output plane is
the image plane conjugate to the input plane and A is the linear magnification.
(d) When a parallel bundle of rays at the input plane is parallel at the output
plane and D is the angular magnification.
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B = 0,

A = 0,

D = 0,
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conjugate planes for the optical system. Furthermore, since
the matrix element A represents the linear magnification.

4. Now independent of This case is analogous to case 3,
with directions replacing ray heights. Input rays, all of one direction, now
produce parallel output rays in some other direction. Moreover,

is the angular magnification. A system for which is
sometimes called a “telescopic system,” because a telescope admits par-
allel rays into its objective and outputs parallel rays for viewing from
its eyepiece.

Example 3

We illustrate case 3 in this example. We place a small object on axis at a distance
of 16 cm from the left end of a long, plastic rod with a polished spherical end of
radius 4 cm, as indicated in Figure 10. The refractive index of the plastic is 1.50
and the object is in air. Let the unknown image be formed at the output refer-
ence plane, a distance x from the spherical cap. We wish to determine the image
distance x and the lateral magnification m. The system matrix connecting the
object and image planes consists of the product of three matrices, correspond-
ing to (1) a translation in air from object to the rod, (2) a refraction at the
spherical surface, and (3) a translation in plastic to the image.

Solution

Remembering to take the matrices in “reverse” order and working in cm,
we have

or

with the unknown quantity x incorporated in the matrix elements. Accord-
ing to this discussion, when the output plane is the image plane, so
that the image distance x is determined by setting

Further, the linear magnification m is then given by the value of element A:
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n� � 1.50 Figure 10 Schematic defining an example
for ray-transfer matrix methods.
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We conclude that the image occurs 24 cm inside the rod, is inverted, and has
the same lateral size as the object. This illustrates how the system matrix
can be used to find image locations and sizes, although this may usually be
done more quickly by using the Gaussian image formulas derived earlier.

9 LOCATION OF CARDINAL POINTS FOR
AN OPTICAL SYSTEM

Since the properties of an optical system can be deduced from the elements
of the system ray-transfer matrix, it follows that relationships must exist be-
tween the matrix elements, A, B, C, and D and the cardinal points of the sys-
tem. In Figure 11, we generalize Figure 3 by defining distances locating the
six cardinal points relative to the input and output planes that define the
limits of an optical system. The focal points and are located at distances

and from the principal points and and at distances p and q from
the reference input and output planes, respectively. Further, measured from
the input and output planes, the distances r and s locate the principal points,
and the distances and w locate the nodal points. Distances measured to the
right of their reference planes are considered positive and to the left, nega-
tive. The principal points and nodal points often occur outside the optical
system, that is, outside the region defined by the input and output planes.

We now derive the relationships between the distances defined in 
Figure 11 and the system matrix elements. Consider Figure 12a, which high-
lights distances p, r, and as they are determined by the positions of the first
focal point and the first principal plane. Input coordinates of the given ray are

and output coordinates are Thus, the ray equations, Eq. (22),
become for this ray

and

(23)

For small angles, Figure 12a shows that
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wyFigure 11 Location designations for the

six cardinal points of an optical system.
Rays associated with the nodal points and
principal planes are also shown.
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Figure 12 (a) Construction used to relate
distances p, r, and to matrix elements. (b)
Construction used to relate distances q, s,
and to matrix elements. (c) Construction
used to relate distances and w to matrix
elements.

y

f2

f1

where the negative sign indicates that is located a distance p to the left of
the input plane. Incorporating Eq. (23),

(24)

Similarly, and thus

(25)

Finally, using Eqs. (24) and (25), the positive distance r can be expressed in
terms of p and 

(26)

Using Figure 12b, one can similarly discover relations for the output dis-
tances and s. The results, together with those just derived for q, f2 , p, f1 ,

r = p - f1 =

D

C
-

n0

nf

1

C
=

1

C
aD -

n0

nf
b

f1:

f1 =

AD - BC

C
=

Det1M2

C
= a

n0

nf
b

1

C

f1 =

-yf

a0
=

-1Ay0 + Ba02

a0
=

AD

C
- B

a0 = yf>1-f12,

p =

-y0

a0
=

D

C

F1
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fA

RP1 RP2

fB

L

Figure 13 Optical system consisting of
two thin lenses in air, separated by a dis-
tance L.

TABLE 2 CARDINAL POINT LOCATIONS IN TERMS OF SYSTEM MATRIX ELEMENTS

Located relative to input (1) and output (2) reference planes

Located relative to principal planes

p =

D

C
F1

q = -

A

C
F2

r =

D - n0>nf

C
H1

s =

1 - A

C
H2

y =

D - 1

C
N1

w =

n0>nf - A

C
N2

f1 = p - r =

no /nf

C
F1

fs = q - s = –
1

C
F2

s
and r, are listed in Table 2. With the help of Figure 12c, the nodal plane dis-
tances and w may also be determined. For example, for small angle 

(27)

where the negative sign indicates that the ray intersects the input plane below
the axis. Input and output rays make the same angle relative to the axis. From
Eq. (22), with 

(28)

Combining Eqs. (27) and (28),

(29)

Similarly, one can show that

(30)

again using the fact that Det These results are
also included in Table 2. The relationships listed there can be used to estab-
lish the following useful generalizations:

1. Principal points and nodal points coincide, that is, and when
the initial and final media have the same refractive indices.

2. First and second focal lengths of an optical system are equal in magni-
tude when initial and final media have the same refractive indices.

3. The separation of the principal points is the same as the separation of
nodal points, that is, 

10 EXAMPLES USING THE SYSTEM
MATRIX AND CARDINAL POINTS

As an example, consider an optical system that consists of two thin lenses in
air, separated by a distance L, as shown in Figure 13. The lenses have focal
lengths of and which may be either positive or negative.fA fB ,

r - s = y - w.

r = y s = w,

1M2 = AD - BC = n0>nf .

w =

1n0>nf2 - A

C

y =

D - 1

C

a = Cy0 + Da or
y0

a
=

1 - D

C

a0 = af = a,

a = -

y0

y

a,y

y
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If input and output reference planes are located at the lenses, the system
matrix includes two thin-lens matrices, and and a translation matrix
for the distance L between them. The system matrix is or

(31)

Reference to Table 2 shows that the first and second focal lengths of this sys-
tem are and We shall take the equivalent focal length of
the two-lens system to be So,

(32)

Furthermore, the first principal points and nodal points coincide at a distance
given by from the first lens, and the second principal
points and nodal points coincide at a distance given by
from the second lens. Thus

(33)

Example 4

Let us apply these results to the case of a Huygens eyepiece, which consists
of two positive, thin lenses separated by a distance L equal to the average
of their focal lengths. Suppose and giving

and by Eq. (32). Incidentally, the magnifying
power of this eyepiece, given by 25/f, is therefore From Eq. (33), we
conclude that and The optical system, to-
gether with its cardinal points and sample rays, is shown roughly to scale in
Figure 14. The converging incident rays 1, 2 and 3 determine an image loca-
tion between the lenses, which acts as a virtual object VO for the optical sys-
tem. An enlarged, virtual image (not shown) is formed by the diverging rays
leaving the system, as seen by an eye looking into the eyepiece.

Solution

s = -2.083 cm.r = +3.125 cm

10* .

feq = 2.5 cm,L = 2.604 cm

fA = 3.125 cm fB = 2.083 cm,

r = y = a
feq

fB
bL and s = w = - a

feq

fA
bL

s = w = 11 - A2>C
r = y = 1D - 12>C

1

feq

=

1

fA
+

1

fB
-

L

fAfB

feq = f2 = -1>C.
f2 = -1>C.f1 = 1>C

M = D 1 -

L

fA
L

1

fB
a

L

fA
- 1b -

1

fA
1 -

L

fB

T
M = C 1 0

-

1

fB
1
S C1 L

0 1
S C 1 0

-

1

fA
1
S

M = �B��A ,
��A �B ,

N2 N1

H2 H1

F1 F2
VO

1

3

2

2

1

3

(A) (B)

Figure 14 Ray construction for a Huygens
eyepiece, using cardinal points.
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F1
VI RO

12

3

3

Input
plane

Output
plane

1

2

H1 H2 F2

N2N1

p

s

q

Figure 15 Ray construction for a hemi-
spherical lens, using cardinal points.

Example 5

As a final calculation, let us find the cardinal points and sketch a ray diagram
for the hemispherical glass lens shown in Figure 15. The radii of curvature
are and and the lens in air has a refractive index of 1.50.

Solution

The system matrix, for input and output reference planes at the two sur-
faces of the lens, is, then,

or

The relations in Table 2 then give values of
and Principal and nodal points coin-

cide. The cardinal points are located, approximately to scale, in Figure 15.
Ray diagrams using the principal planes and nodal points are constructed
for an arbitrary real object. In this case the emerging rays determine a vir-
tual image VI near the object RO erect and slightly magnified.

11 RAY TRACING

The assumption of paraxial rays greatly simplifies the description of the progress
of rays of light through an optical system, because trigonometric terms do not
appear in the equations. For many purposes, this treatment is sufficient. In
practice, rays of light contributing to an image in an optical system are, in fact,
usually rays in the near neighborhood of the optical axis. If the quality of the
image is to be improved, however, ways must be found to reduce the ever-
present aberrations that arise from the presence of rays deviating, more or
less, from this ideal assumption. To determine the actual path of individual
rays of light through an optical system, each ray must be traced, independent-
ly, using only the laws of reflection and refraction together with geometry.
This technique is called ray tracing because it was formerly done by hand,

f2 = 6 cm.s = -2 cm, f1 = -6 cm,

p = -6 cm, q = 4 cm, r = 0,

M = D 2

3
2

-

1

6
1

T , with Det1M2 = 1

M = �2��1 = C1 0

0 1.5
S C1 3

0 1
S C 1 0

-0.5

1.5132

1

1.5
S

R1 = 3 cm R2 : q ,
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3A search of the Internet will reveal the existence of several free, high-quality, ray-tracing programs.
4The two dimensions are those of the page on which we have been drawing our ray diagrams.

Without emphasizing this, we have been using meridional rays in all our diagrams.

graphically, with ruler and compass, in a step-by-step process through an ac-
curate sketch of the optical system. Today, with the help of computers, the
necessary calculations yielding the progressive changes in a ray’s altitude and
angle is done more easily and quickly. Graphic techniques are used to actual-
ly draw the optical system and to trace the ray’s progress through the optical
system on the monitor.3

Ray-tracing procedures, such as the one to be described here, are often
limited to meridional rays, that is, rays that pass through the optical axis of the
system. Since the law of refraction requires that refracted rays remain in the
plane of incidence, a meridional ray remains within the same meridional
plane throughout its trajectory. Thus the treatment in terms of meridional
rays is a two-dimensional treatment,4 greatly simplifying the geometrical re-
lationships required. Rays contributing to the image that do not pass through
the optical axis are called skew rays and require three-dimensional geometry
in their calculations. The added complexity does not pose a problem for the
computer, once the ray-tracing program is written. Analysis of various aber-
rations, such as spherical aberration, astigmatism, and coma, require knowl-
edge of the progress of selected nonparaxial rays and skew rays. The design of
a complex lens system, such as a photographic lens with four or five elements,
is a combination of science and skill. By alternating ray tracing with small
changes in the positions, focal lengths, and curvatures of the surfaces involved
and in refractive indices of the elements, the design of the lens system is grad-
ually optimized.

For our present purposes, it will be sufficient to show how the appropri-
ate equations for meridional ray tracing can be developed and how they can
be repeated in stepwise fashion to follow a ray through any number of spher-
ical refracting surfaces that constitute an optical system. The technique is well
adapted to iterative loops handled by computer programs.

Figure 16 shows a single, representative step in the ray-tracing analysis.
By incorporating a sign convention, the equations developed from this dia-
gram can be made to apply to any ray and to any spherical refracting surface.
The ray selected originates at (or passes through) point A, making an angle
with the optical axis. The ray passes through the optical axis at O and then 

a

n�

s�

n

�s

a

QM

N

R

P

B

A

R

O

V

�D

Q

C
I

u

u�a
�a�

�h

u a

a

u�

a

a

Optical axis

Figure 16 Single refraction at a spherical
surface. The figure defines the symbols and
shows the geometrical relationships that
lead to ray-tracing equations for a merid-
ional ray.
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intersects the refracting surface at P, where it is refracted into a medium of
index cutting the axis again at I. The angles of incidence and refraction, 
and are related by Snell’s law. Points O and I are conjugate points with dis-
tances s and from the surface vertex at V. The radius R of the surface is also
shown, passing through the center of curvature at C. Other points and lines
are added to help in developing the necessary geometrical relationships.

The sign convention is the same as that used previously in this chapter. Dis-
tances to the left of the vertex V are negative, and to the right, positive. If we use
light rays progressing from left to right, their angles have the same sign as their
slopes. Distances measured above the axis are positive and below, negative. An
important quantity in the calculations, also subject to this sign convention, is the
parameter Q, the perpendicular distance VB from the vertex to the ray, as shown.

The input parameters for the ray are its elevation h, angle and dis-
tance D. Figure 16 shows that the “object distance,” s, is related to D by

(34)

Also, in 

(35)

In 

In 

Eliminating the length a from the last two equations, we get

(36)

Snell’s law at P:

(37)

In 

(38)

The Q parameter for the refracted ray is shown in Figure 17a as .
Analogous to the relations just found, we see that in 

in 

As before, when is eliminated, there results

(39)Q¿ = R1sin u¿ - sin a¿2

a¿

sin u¿ =

Q¿ - a¿

R

¢PLC:

sin1-a¿2 =

a¿

R

¢CMV:
Q¿

u - a = u¿ - a¿

¢CPI:

n sin u = n¿ sin u¿

sin u =

Q

R
+ sin a

sin a =

a

R

¢VNC:

sin u =

a + Q

R

¢PMC:

sin a =

Q
-s

¢OBV:

s = D -

h

tan a

a,

s¿

u
u¿,

n¿,
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In 

(40)

The relevant equations describing the first refraction are included in Table 3
under the first column for the general case.

The calculations lead to new values of Q, and s (now primed), which
prepare for the next refraction in the sequence. The geometrical transfer to
the next surface, at distance t from the first, is shown in Figure 17b, where, in

sin1-a22 =

V1M

t
=

Q1
œ

- Q2

t

¢V2MV1 ,

a,

sin1-a¿2 =

Q¿

s¿

or s¿ =

-Q¿

sin a¿

¢ITV:

s�

V R C

L

I
a�

MQ�

�a� �a�

u�
T

P

(a) (b)

V1

M

Q�

�a1� �a2
�a2

1

�Q2
V2

t
Figure 17 (a) Geometrical relationship of
refracted-ray parameters with the distance

(b) Geometrical relationships illus-
trating the transfer between Q and after
one refraction and before the next.

a

Q¿.

TABLE 3 MERIDIONAL RAY-TRACING EQUATIONS (INPUT: )

General case Ray parallel to axis: Plane surface: 

—

—

—

Transfer: Input: t

Input: new R

Return: to calculate 

R Q qa = 0

u

n¿,

n = n¿

a = a¿

Q = Q¿ + t sin a¿

s¿ =

-Q¿

sin a¿

s¿ =

-Q¿

sin a¿

s¿ =

-Q¿

sin a¿

Q¿ = Q
cos a¿

cos a
Q¿ = R1sin u¿ - sin a¿2Q¿ = R1sin u¿ - sin a¿2

a¿ = sin-1 n

n¿ sin a
a¿ = u¿ - u + aa¿ = u¿ - u + a

u¿ = sin-1 a
n sin u

n¿

bu¿ = sin-1 a
n sin u

n¿

b

u = sin-1 a
Q

R
+ sin abu = sin-1 a

Q

R
+ sin ab

Q = -s sin aQ = hQ = -s sin a

s = D -

h

tan a
s = D -

h

tan a

n, nœ, R, A, h, D
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Input Results: ray at Results: ray at 

First surface:

Second surface:

Third surface:

Final surface:

h = 1 h = 5

Q¿ = 5.1672Q¿ = 1.0353

s¿ = 203.91s¿ = 205.72R = -51.2

a¿ = -1.4520°a¿ = -0.2883°n = 1

Q = 5.1793Q = 1.0353t = 3

Q¿ = 5.1260Q¿ = 1.0247

s¿ = -288.58s¿ = -289.26R = -96.2

a¿ = 1.0178°a¿ = 0.2030°n = 1.514

Q = 5.1261Q = 1.0247t = 2

Q¿ = 5.0876Q¿ = 1.0170

s¿ = -264.03s¿ = -264.59R = -34.6

a¿ = 1.1041°a¿ = 0.2202°n = 1.581

Q = 5.0861Q = 1.0170t = 6

Q¿ = 5.0010Q¿ = 1.0000R = -120.8

s¿ = -352.53s¿ = -352.66h = 1 or 5

a¿ = 0.8128°a¿ = 0.1625°a = 0

Q = 5Q = 1n = 1, n¿ = 1.521

PROBLEMS

1 A biconvex lens of 5 cm thickness and index 1.60 has sur-
faces of radius 40 cm. If this lens is used for objects in water,
with air on its opposite side, determine its effective focal
length and sketch its focal and principal points.

2 A double concave lens of glass with has surfaces
of 5 D (diopters) and 8 D, respectively. The lens is used in
air and has an axial thickness of 3 cm.

n = 1.53

a. Determine the position of its focal and principal
planes.

b. Also find the position of the image, relative to the lens
center, corresponding to an object at 30 cm in front of
the first lens vertex.

c. Calculate the paraxial image distance assuming the thin-
lens approximation. What is the percent error involved?

or

(41)

Table 3 also shows how the equations must be modified for two special cases:
(1) when the incident ray is parallel to the axis and (2) when the surface is
plane, with an infinite radius of curvature.

Example 6

Do a ray trace for two rays through a Rapid landscape photographic lens of
three elements. The parallel rays enter the lens from a distant object at alti-
tudes of 1 and 5 mm above the optical axis. The lens specifications (all di-
mensions in mm) are as follows:

Solution

Since the rays are parallel to the axis, the second column of Table 3 is used
to calculate the progress of the ray. These can be tabulated as follows:

R4 = -51.2 t3 = 3 n3 = 1.514

R3 = -96.2 t2 = 2 n2 = 1.581

R2 = -34.6 t1 = 6 n1 = 1.521

R1 = -120.8

Q2 = Q1
œ

+ t sin a2

Thus the two rays intersect the optical axis at 205.72 and 203.91 mm beyond
the final surface, missing a common focus by 1.8 mm.
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3 A biconcave lens has radii of curvature of 20 cm and 10 cm.
Its refractive index is 1.50 and its central thickness is 5 cm.
Describe the image of a 1-in.-tall object, situated 8 cm from
the first vertex.

4 An equiconvex lens having spherical surfaces of radius 10 cm,
a central thickness of 2 cm, and a refractive index of 1.61 is
situated between air and water An object 5 cm
high is placed 60 cm in front of the lens surface. Find the
cardinal points for the lens and the position and size of the
image formed.

5 A hollow glass sphere of radius 10 cm is filled with water.
Refraction due to the thin glass walls is negligible for
paraxial rays.

a. Determine its cardinal points and make a sketch to scale.
b. Calculate the position and magnification of a small ob-

ject 20 cm from the sphere.
c. Verify your analytical results by drawing appropriate

rays on your sketch.

6 Light rays enter the plane surface of a glass hemisphere of
radius 5 cm and refractive index 1.5.

a. Using the system matrix representing the hemisphere, de-
termine the exit elevation and angle of a ray that enters
parallel to the optical axis and at an elevation of 1 cm.

b. Enlarge the system to a distance x beyond the hemi-
sphere and find the new system matrix as a function of x.

c. Using the new system matrix, determine where the ray
described above crosses the optical axis.

7 Using Figure 12b and c, verify the expressions given in
Table 2 for the distances q, s, and w.

8 A lens has the following specifications:

Find the principal points using the matrix method. Include a
sketch, roughly to scale, and do a ray diagram for a finite ob-
ject of your choice.

9 A positive thin lens of focal length 10 cm is separated by
5 cm from a thin negative lens of focal length Find
the equivalent focal length of the combination and the po-
sition of the foci and principal planes using the matrix ap-
proach. Show them in a sketch of the optical system, roughly
to scale, and use them to find the image of an arbitrary object
placed in front of the system.

10 A glass lens 3 cm thick along the axis has one convex face of
radius 5 cm and the other, also convex, of radius 2 cm. The
former face is on the left in contact with air and the other in
contact with a liquid of index 1.4. The refractive index of the
glass is 1.50. Find the positions of the foci, principal planes,
and focal lengths of the system. Use the matrix approach.

11 a. Find the matrix for the simple “system” of a thin lens of
focal length 10 cm, with input plane at 30 cm in front of
the lens and output plane at 15 cm beyond the lens.

b. Show that the matrix elements predict the locations of
the six cardinal points as they would be expected for a
thin lens.

c. Why is in this case? What is the special meaning
of A in this case?

B = 0

-10 cm.

n1 = 1.00, n2 = 1.60, n3 = 1.30.

R1 = 1.5 cm = R2, d1thickness2 = 2.0 cm,

1n = 1.332.

f2 ,

12 A gypsy’s crystal ball has a refractive index of 1.50 and a di-
ameter of 8 in.
a. By the matrix approach, determine the location of its

principal points.
b. Where will sunlight be focused by the crystal ball?

13 A thick lens presents two concave surfaces, each of radius 5
cm, to incident light. The lens is 1 cm thick and has a refrac-
tive index of 1.50. Find (a) the system matrix for the lens
when used in air and (b) its cardinal points. Do a ray dia-
gram for some object.

14 An achromatic doublet consists of a crown glass positive lens
of index 1.52 and of thickness 1 cm, cemented to a flint glass
negative lens of index 1.62 and of thickness 0.5 cm. All sur-
faces have a radius of curvature of magnitude 20 cm. If the
doublet is to be used in air, determine (a) the system matrix
elements for input and output planes adjacent to the lens sur-
faces; (b) the cardinal points; (c) the focal length of the com-
bination, using the lensmaker’s equation and the equivalent
focal length of two lenses in contact. Compare this calculation
of f, which assumes thin lenses, with the previous value.

15 Enlarge the optical system of Figure 15 to include an object
space to the left and an image space to the right of the lens.
Let the new input plane be located at distance s in object
space and the new output plane at distance in image space.

a. Recalculate the system matrix for the enlarged system.
b. Examine element B to determine the general relation-

ship between object and image distances for the lens.
Also determine the general relationship for the lateral
magnification.

c. From the results of (b), calculate the image distance
and lateral magnification for an object 20 cm to the left
of the lens.

d. What information can you find for the system by setting
matrix elements A and D equal to zero? (See Figure 9.)

16 Find the system matrix for a Cooke triplet camera lens.
Light entering from the left encounters six spherical 
surfaces whose radii of curvature are, in turn, to The
thickness of the three lenses are, in turn, to and the 
refractive indices are to The first and second air 
separations between lens surfaces are and Sketch the
lens system with its cardinal points. How far behind the last
surface must the film plane occur to focus paraxial rays?

Data: 

17 Process the product of matrices for a thick lens, as in 
Eq. (15), without assuming the special conditions,
and Thus find the general matrix elements A, B, C,
and D for a thick lens.

18 Using the cardinal point locations (Table 2) in terms of the
matrix elements for a general thick lens (problem 17), verify
that and are given by Eqs. (1) and (2).

19 Using the cardinal point locations (Table 2) in terms of 
the matrix elements for a general thick lens (problem 17),

f1 f2

t = 0.

n = n¿

d2 = 12.90 mmr6 = -66.4 mm

d1 = 1.63 mmr5 = 311.3 mm

r4 = 18.9 mm

n3 = 1.6110t3 = 3.03 mmr3 = -57.8 mm

n2 = 1.5744t2 = 0.93 mmr2 = -128.3 mm

n1 = 1.6110t1 = 4.29 mmr1 = 19.4 mm

d1 d2 .

n1 n3 .

t3 ,t1

r1 r6 .

s¿

Matrix Methods in Paraxial Optics 417



Matrix Methods in Paraxial Optics

verify that the distances r, s, and w are given by Eqs. (3)
and (4).

20 Write a computer program that incorporates Eqs. (34) to
(41) for ray tracing through an arbitrary number of refract-
ing, spherical surfaces. The program should allow for the
special cases of rays from far-distant objects and for plane
surfaces of refraction.

21 Trace two rays through the hemispherical lens of Figure 15.
The rays originate from the same object point, 2 cm above
the optical axis and an axial distance of 10 cm from the first
surface. One ray is parallel to the axis and the other makes
an angle of with the axis.

22 Trace a ray originating 7 mm below the optical axis and 100
mm distant from a doublet. The ray makes an angle of
relative to the horizontal. The doublet is an equiconvex lens
of radius 50 mm, index 1.50, and central thickness 20 mm,

y,

+5°

-20°

followed by a matched meniscus lens of radii mm and
mm, index 1.8, and central thickness 5 mm. Determine

the final values of s, and Q.

23 Trace two rays, both from far-distant objects, through a Pro-
tor photographic lens, one at altitude of 1 mm and the other
at 5 mm. Determine where and at what angle the rays cross
the optical axis. The specifications of this four-element lens,
including an intermediate air space of 3 mm, are as follows,
with distances in mm:

-50

R6 = -14.3

n5 = 1.6112t5 = 1.8R5 = 18.6

n4 = 1.5154t4 = 1.1R4 = -12.8

n3 = 1R3 = 18.6 t3 = 3.0

R2 = 5.8 t2 = 1.3 n2 = 1.6031

R1 = 17.5 t1 = 2.9 n1 = 1.6489

a,

-87
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