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INTRODUCTION

The treatment of light as wave motion allows for a region of approximation in
which the wavelength is considered to be negligible compared with the di-
mensions of the relevant components of the optical system. This region of ap-
proximation is called geometrical optics. When the wave character of the light
may not be so ignored, the field is known as physical optics. Thus, geometrical
optics forms a special case of physical optics in a way that may be summarized
as follows:

I}m%t {physical optics} = {geometrical optics}

Since the wavelength of light—around 500 nm—is very small compared
to ordinary objects, early unrefined observations of the behavior of a light
beam passing through apertures or around obstacles in its path could be han-
dled by geometrical optics. Recall that the appearance of distinct shadows in-
fluenced Newton to assert that the apparent rectilinear propagation of light
was due to a stream of light corpuscles rather than a wave motion. Wave mo-
tion characterized by longer wavelengths, such as those in water waves and
sound waves, was known to give distinct bending around obstacles. Newton’s
model of light propagation, therefore, seemed not to allow for the existence
of a wave motion with very small wavelengths. There was in fact already evi-
dence of some degree of bending, even for light waves, in the time of Isaac
Newton. The Jesuit Francesco Grimaldi had noticed the fine structure in the
edge of a shadow, a structure not explainable in terms of the rectilinear prop-
agation of light. This bending of light waves around the edges of an obstruc-
tion came to be called diffraction.
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Within the approximation represented by geometrical optics, light is un-
derstood to travel out from its source along straight lines, or rays. The ray is
then simply the path along which light energy is transmitted from one point
to another in an optical system. The ray is a useful construct, although ab-
stract in the sense that a light beam, in practice, cannot be narrowed down in-
definitely to approach a straight line. A pencil-like laser beam is perhaps the
best actual approximation to a ray of light. (When an aperture through which
the beam is passed is made small enough, however, even a laser beam begins
to spread out in a characteristic diffraction pattern.) When a light ray travers-
es an optical system consisting of several homogeneous media in sequence,
the optical path is a sequence of straight-line segments. Discontinuities in the
line segments occur each time the light is reflected or refracted. The laws of
geometrical optics that describe the subsequent direction of the rays are the
Law of Reflection and the Law of Refraction.

Law of Reflection

When a ray of light is reflected at an interface dividing two optical media, the
reflected ray remains within the plane of incidence, and the angle of reflection
0, equals the angle of incidence 6;. The plane of incidence is the plane contain-
ing the incident ray and the surface normal at the point of incidence.

Law of Refraction (Snell's Law)

When a ray of light is refracted at an interface dividing two transparent media,
the transmitted ray remains within the plane of incidence and the sine of the
angle of refraction 6, is directly proportional to the sine of the angle of inci-
dence 6;. These two laws are summarized in Figure 1, which depicts the
general case in which an incident ray is partially reflected and partially trans-
mitted at a plane interface separating two transparent media.

1 HUYGENS’ PRINCIPLE

The Dutch physicist Christian Huygens envisioned light as a series of pulses
emitted from each point of a luminous body and propagated in relay fashion
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Figure 1 Reflection and refraction at an
interface between two optical media. Inci-
dent, reflected, and refracted rays are shown
in the plane of incidence.
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Figure 2 Illustration of Huygens’ principle
for (a) plane and (b) spherical waves.

Figure 3 Huygens’ construction for an ob-
structed wavefront.
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by the particles of the ether, an elastic medium filling all space. Consistent
with his conception, Huygens imagined each point of a propagating distur-
bance as capable of originating new pulses that contributed to the distur-
bance an instant later. To show how his model of light propagation implied
the laws of geometrical optics, he enunciated a fruitful principle that can be
stated as follows: Each point on the leading surface of a wave disturbance—
the wavefront—may be regarded as a secondary source of spherical waves
(or wavelets), which themselves progress with the speed of light in the medi-
um and whose envelope at a later time constitutes the new wavefront. Simple
applications of the principle are shown in Figure 2 for a plane and spherical
wave. In each case, AB forms the initial wave disturbance or wavefront, and
A'B'’ is the new wavefront at a time ¢ later. The radius of each wavelet is, ac-
cordingly, vt, where v is the speed of light in the medium. Notice that the new
wavefront is tangent to each wavelet at a single point. According to Huygens,
the remainder of each wavelet is to be disregarded in the application of the
principle. Indeed, were the remainder of the wavelet considered to be effec-
tive in propagating the light disturbance, Huygens could not have derived the
law of rectilinear propagation from his principle. To see this more clearly,
refer to Figure 3, which shows a spherical wave disturbance originating at O
and incident upon an aperture with an opening SS’. According to the notion
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of rectilinear propagation, the lines OA and OB form the sharp edges of the
shadow to the right of the aperture. Some of the wavelets that originate from
points of the wavefront (arc SS"), however, overlap into the region of shadow.
According to Huygens, however, these are ignored and the new wavefront
ends abruptly at points P and P’, precisely where the extreme wavelets origi-
nating at points S and S’ are tangent to the new wavefront. In so disregarding
the effectiveness of the overlapping wavelets, Huygens avoided the possibili-
ty of diffraction of the light into the region of geometric shadow. Huygens
also ignored the wavefront formed by the back half of the wavelets, since
these wavefronts implied a light disturbance traveling in the opposite direc-
tion. Despite weaknesses in this model, remedied later by Fresnel and others,
Huygens was able to apply his principle to prove the laws of both reflection
and refraction, as we show in what follows.

Figure 4a illustrates the Huygens construction for a narrow, parallel
beam of light to prove the law of reflection. Huygens’ principle must be mod-
ified slightly to accommodate the case in which a wavefront, such as AC, en-
counters a plane interface, such as XY, at an angle. Here the angle of
incidence of the rays AD, BE, and CF relative to the perpendicular PD is 0;.
Since points along the plane wavefront do not arrive at the interface simulta-
neously, allowance is made for these differences in constructing the wavelets
that determine the reflected wavefront. If the interface XY were not present,
the Huygens construction would produce the wavefront G/ at the instant ray
CF reached the interface at /. The intrusion of the reflecting surface, howev-
er, means that during the same time interval required for ray CF to progress
from F'to I, ray BE has progressed from E to J and then a distance equivalent
to JH after reflection. Thus, a wavelet of radius JN = JH centered at J is
drawn above the reflecting surface. Similarly, a wavelet of radius DG is drawn
centered at D to represent the propagation after reflection of the lower part of
the beam. The new wavefront, which must now be tangent to these wavelets at
points M and N, and include the point /, is shown as K/ in the figure. A repre-
sentative reflected ray is DL, shown perpendicular to the reflected wavefront.
The normal PD drawn for this ray is used to define angles of incidence and re-
flection for the beam. The construction makes clear the equivalence between
the angles of incidence and reflection, as outlined in Figure 4a.

Similarly, in Figure 4b, a Huygens construction is shown that illustrates
the law of refraction. Here we must take into account a different speed of
light in the upper and lower media. If the speed of light in vacuum is ¢, we
express the speed in the upper medium by the ratio ¢/n;, where n; is a con-
stant that characterizes the medium and is referred to as the refractive index.
Similarly, the speed of light in the lower medium is ¢/n,. The points D, E, and
F on the incident wavefront arrive at points D, J, and [ of the plane interface
XY at different times. In the absence of the refracting surface, the wavefront
G1 is formed at the instant ray CF reaches I. During the progress of ray CF
from F to I in time ¢, however, the ray AD has entered the lower medium,
where its speed is, let us say, slower. Thus, if the distance DG is v;t, a wavelet
of radius v,t is constructed with center at D. The radius DM can also be ex-

pressed as
DG :
DM = vt = UZ<> = <n>DG
v; n;

Similarly, a wavelet of radius (n;/n,) JH is drawn centered at J. The new wave-
front K/ includes point / on the interface and is tangent to the two wavelets at
points M and N, as shown. The geometric relationship between the angles 6; and
0,, formed by the representative incident ray AD and refracted ray DL, is Snell’s
law, as outlined in Figure 4b. Snell’s law of refraction may be expressed as

n; sin §; = n, sin 6, 1)
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Figure 4 (a) Huygens’ construction to
prove the law of reflection. (b) Huygens’
construction to prove the law of refraction.
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2 FERMAT'’S PRINCIPLE

The laws of geometrical optics can also be derived, perhaps more elegantly,
from a different fundamental hypothesis. The root idea had been introduced
by Hero of Alexandria, who lived in the second century B.C. According to
Hero, when light is propagated between two points, it takes the shortest path.
For propagation between two points in the same uniform medium, the path is
clearly the straight line joining the two points. When light from the first point
A, Figure 5, reaches the second point B after reflection from a plane surface,
however, the same principle predicts the law of reflection, as follows. Figure 5
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A B

shows three possible paths from A to B, including the correct one, ADB.
Consider, however, the arbitrary path ACB. If point A’ is constructed on the
perpendicular AO such that AO = OA'’, the right triangles AOC and A’'OC
are equal. Thus, AC = A’'C and the distance traveled by the ray of light from
A to B via C is the same as the distance from A’ to B via C. The shortest dis-
tance from A’ to B is obviously the straight line A’ DB, so the path ADB is the
correct choice taken by the actual light ray. Elementary geometry shows that
for this path, 8; = 6,. Note also that to maintain A’ DB as a single straight line,
the reflected ray must remain within the plane of incidence, that is, the plane
of the page.

The French mathematician Pierre de Fermat generalized Hero’s princi-
ple to prove the law of refraction. If the terminal point B lies below the surface
of a second medium, as in Figure 6, the correct path is definitely not the short-
est path or straight line A B, for that would make the angle of refraction equal
to the angle of incidence, in violation of the empirically established law of
refraction. Appealing to the “economy of nature,” Fermat supposed instead
that the ray of light traveled the path of least time from A to B, a generaliza-
tion that included Hero’s principle as a special case. If light travels more slow-
ly in the second medium, as assumed in Figure 6, light bends at the interface so
as to take a path that favors a shorter time in the second medium, thereby
minimizing the overall transit time from A to B. Mathematically, we are
required to minimize the total time,

AO OB
="+ —
V; Uy

where v; and v, are the velocities of light in the incident and transmitting
media, respectively. Employing the Pythagorean theorem and the distances

defined in Figure 6, we have AO = Va*> + x> and OB = Vb* + (¢ — x)?,

so that

at + x* \/b2-+-(c—x)2
J’_

V; Uy

Since other choices of path change the position of point O and therefore the
distance x, we can minimize the time by setting dt/dx = 0:

dt X c—Xx

- _ =0
dx  yNa*+ x> v VP + (c — x)?

Again from Figure 6, in the two right triangles containing AO and OB,
respectively, the angles of incidence and refraction can be conveniently

21

Figure 5 Construction to prove the law of
reflection from Hero’s principle.

Figure 6 Construction to prove the law of
refraction from Fermat’s principle.
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introduced into the preceding condition, since sinf; = ———— and
c— X @+ x*

, giving
VDb + (¢ — x)?

sin 6, =

dt sinf; siné,

——=————=0

dx V; Y
Simplifying the equation set equal to zero, we obtain at once v, sin 6;
= y; sin 6,. Introducing the refractive indices of the media through the rela-
tion v = ¢/n, we arrive at Snell’s law:

n; sin ; = n, sin 6,

Fermat’s principle, like that of Huygens, required refinement to achieve
more general applicability. Situations exist where the actual path taken by a
light ray may represent a maximum time or even one of many possible paths,
all requiring equal time. As an example of the latter case, consider light prop-
agating from one focus to the other inside an ellipsoidal mirror, along any of
an infinite number of possible paths. Since the ellipse is the locus of all points
whose combined distances from the two foci is a constant, all paths are in-
deed of equal time. A more precise statement of Fermat’s principle, which re-
quires merely an extremum relative to neighboring paths, may be given as
follows: The actual path taken by a light ray in its propagation between two
given points in an optical system is such as to make its optical path equal, in
the first approximation, to other paths closely adjacent to the actual one.

With this formulation, Fermat’s principle falls in the class of problems
called variational calculus, a technique that determines the form of a function
that minimizes a definite integral. In optics, the definite integral is the integral
of the 1time required for the transit of a light ray from starting to finishing
points.

3 PRINCIPLE OF REVERSIBILITY

Refer again to the cases of reflection and refraction pictured in Figures 5 and 6. If
the roles of points A and B are interchanged, so that B is the source of light rays,
Fermat’s principle of least time must predict the same path as determined for
the original direction of light propagation. In general, then, any actual ray of
light in an optical system, if reversed in direction, will retrace the same path
backward. This principle of reversibility will be found very useful in various
applications to be dealt with later.

4 REFLECTION IN PLANE MIRRORS

Before discussing the formation of images in a general way, we discuss the
simplest—and experientially, the most accessible—case of images formed by
plane mirrors. In this context it is important to distinguish between specular
reflection from a perfectly smooth surface and diffuse reflection from a gran-
ular or rough surface. In the former case, all rays of a parallel beam incident
on the surface obey the law of reflection from a plane surface and therefore
reflect as a parallel beam; in the latter case, though the law of reflection is
obeyed locally for each ray, the microscopically granular surface results in

It is of interest to note here that a similar principle, called Hamilton’s principle of least action
in mechanics, that calls for a minimum of the definite integral of the Lagrangian function (the ki-
netic energy minus the potential energy), represents an alternative formulation of the laws of me-
chanics and indeed implies Newton’s laws of mechanics themselves.
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rays reflected in various directions and thus a diffuse scattering of the origi-
nally parallel rays of light. Every plane surface will produce some such scat-
tering, since a perfectly smooth surface can only be approximated in practice.
The treatment that follows assumes the case of specular reflection.

Consider the specular reflection of a single light ray OP from the xy-
plane in Figure 7a. By the law of reflection, the reflected ray PQ remains
within the plane of incidence, making equal angles with the normal at P. If
the path OPQ is resolved into its x-, y-, and z-components, it is clear that the
direction of ray OP is altered by the reflection only along the z-direction, and
then in such a way that its z-component is simply reversed. If the direction of
the incident ray is described by its unit vector, ¥; = (x, y, z), then the reflec-
tion causes

= (xy2z) —5=(xy-2)

It follows that if a ray is incident from such a direction as to reflect sequen-
tially from all three rectangular coordinate planes, as in the “corner reflector”
of Figure 7b,

i:] = (X,y,z) - i:2 = (_X, -y, _Z)

and the ray returns precisely parallel to the line of its original approach. A
network of such corner reflectors ensures the exact return of a beam of
light—a headlight beam from highway reflectors, for example, or a laser
beam from a mirror on the moon.

Image formation in a plane mirror is illustrated in Figure 8a. A point
object S sends rays toward a plane mirror, which reflect as shown. The law of
reflection ensures that pairs of triangles like SNP and S’ NP are equal, so all
reflected rays appear to originate at the image point S’, which lies along the
normal line SN, and at such a depth that the image distance S'N equals the
object distance SN.The eye sees a point image at S’ in exactly the same way it
would see a real point object placed there. Since none of the actual rays of
light lies below the mirror surface, the image is said to be a virtual image. The
image S’ cannot be projected on a screen as in the case of a real image. All
points of an extended object, such as the arrow in Figure 8b, are imaged by a
plane mirror in similar fashion: Each object point has its image point along its
normal to the mirror surface and as far below the reflecting surface as the
object point lies above the surface. Note that the image position does not
depend on the position of the eye. Further, the construction of Figure 8b
makes clear that the image size is identical with the object size, giving a mag-
nification of unity. In addition, the transverse orientation of object and image
are the same. A right-handed object, however, appears left-handed in its
image. In Figure 8c, where the mirror does not lie directly below the object,
the mirror plane may be extended to determine the position of the image as
seen by an eye positioned to receive reflected rays originating at the object.
Figure 8d illustrates multiple images of a point object O formed by two per-
pendicular mirrors. Images /; and I, result from single reflections in the two
mirrors, but a third image /5 results from sequential reflections from both
mirrors.

5 REFRACTION THROUGH
PLANE SURFACES

Consider light ray (1) in Figure 9a, incident at angle 6; at a plane interface
separating two transparent media characterized, in order, by refractive in-
dices n; and n,. Let the angle of refraction be the angle 6,. Snell’s law, which
now takes the form

ny sin 6; = n, sin 6, )
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Figure 7 Geometry of a ray reflected
from a plane.
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Figure 8 Image formation in a plane
mirror.

Figure 9 Geometry of rays refracted by a
plane interface.
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requires an angle of refraction such that refracted rays bend away from the
normal, as shown in Figure 9a, for rays 1 and 2, when n, < n;. For n, > n,
on the other hand, the refracted ray bends toward the normal. The law also
requires that ray 3, incident normal to the surface (6; = 0), be transmitted
without change of direction (6, = 0), regardless of the ratio of refractive
indices.

In Figure 9a, the three rays shown originate at a source point S below an
interface and emerge into an upper medium of lower refractive index, as in
the case of light emerging from water (n; = 1.33) into air (n, = 1.00).
A unique image point is not determined by these rays because they have no
common intersection or virtual image point below the surface from which
they appear to originate after refraction, as shown by the dashed line extensions
of the refracted rays. For rays making a small angle with the normal to the sur-
face, however, a reasonably good image can be located. In this approximation,
where we allow only such paraxial rays® to form the image, the angles of inci-
dence and refraction are both small, and the approximation

sin # = tan # = 0 (in radians)

is valid. From Eq. (2), Snell’s law can be approximated by
nytan 0, = n, tan 0, 3)

and taking the appropriate tangents from Figure 9b, we have

(3)=(2)

ny>ny ) ny>ny
A | 0
3 2
3) ) |
/ | | 0, — X —>|
n I I I ny
m | 0, 7 n
’ 2 /
s
N l / P
l _Y__ g 1]
s« —de———— s¢ O

(a) (b)

I’l]>}’l2

n

n

(©

%In general, a paraxial ray is one that remains near the central axis of the image-forming opti-
cal system, thus making small angles with the optical axis.
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The image point occurs at the vertical distance s’ below the surface given by

()

where s is the corresponding depth of the object. Thus, objects underwater,
viewed from directly overhead, appear to be nearer the surface than they ac-
tually are, since in this case s’ = (1/1.33) s = (3/4)s. Even when the viewing
angle 6, is not small, a reasonably good retinal image of an underwater object
is formed because the aperture or pupil of the eye admits only a small bundle
of rays while forming the image. Since these rays differ very little in direction,
they will appear to originate from approximately the same image point. How-
ever, the depth of this image will not be 3/4 the object depth, as for paraxial
rays, and in general will vary with the angle of viewing.

Rays from the object that make increasingly larger angles of incidence
with the interface must, by Snell’s law, refract at increasingly larger angles, as
shown in Figure 9c. A critical angle of incidence 6, is reached when the angle
of refraction reaches 90°. Thus, from Snell’s law,

. Y . n
s OC = YT sin 90 = }’T
1 1

or
0, = sin1<:1:) (5)

For angles of incidence 6; > 6., the incident ray experiences total internal re-
flection, as shown. For angle of incidence §; < 6. both refraction and reflection
occur. The reflected rays for this case are not shown in Figure 9c. This phenome-
non is essential in the transmission of light along glass fibers by a series of total
internal reflections. Note that the phenomenon does not occur unless n; > n,,
so that 6, can be determined from Eq. (5).

We return to the nature of images formed by refraction at a plane sur-
face when we deal with such refraction as a special case of refraction from a
spherical surface.

6 IMAGING BY AN OPTICAL SYSTEM

We discuss now what is meant by an image in general and indicate the practical
and theoretical factors that render an image less than perfect. In Figure 10, let
the region labeled “optical system” include any number of reflecting and/or re-
fracting surfaces, of any curvature, that may alter the direction of rays leaving
an object point O. This region may include any number of intervening media,
but we shall assume that each individual medium is homogeneous and isotrop-
ic, and so characterized by its own refractive index. Thus rays spread out radial-
ly in all directions from object point O, as shown, in real object space, which
precedes the first reflecting or refracting surface of the optical system. The fam-
ily of spherical surfaces normal to the rays are the wavefronts, the locus of

Real object _ _ Real image
space space
o Optical I

system
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Figure 10 Image formation by an optical
system.
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points such that each ray contacting a wavefront represents the same transit
time of light from the source. In real object space the rays are diverging and
the spherical wavefronts are expanding. Suppose now that the optical system
redirects these rays in such a way that on leaving the optical system and en-
tering real image space, the wavefronts are contracting and the rays are con-
verging to a common point that we define to be the image point, I. In the
spirit of Fermat’s principle, we can say that since every such ray starts at O
and ends at /, every such ray requires the same transit time. These rays are
said to be isochronous. Further, by the principle of reversibility, if I is the ob-
ject point, each ray will reverse its direction but maintain its path through the
optical system, and O will be the corresponding image point. The points O
and / are said to be conjugate points for the optical system. In an ideal optical
system, every ray from O intercepted by the system—and only these rays—
also passes through /. To image an actual object, this requirement must hold
for every object point and its conjugate image point.

Nonideal images are formed in practice because of (1) light scattering,
(2) aberrations, and (3) diffraction. Some rays leaving O do not reach / due to
reflection losses at refracting surfaces, diffuse reflections from reflecting sur-
faces, and scattering by inhomogeneities in transparent media. Loss of rays by
such means merely diminishes the brightness of the image; however, some of
these rays are scattered through / from nonconjugate object points, degrad-
ing the image. When the optical system itself cannot produce the one-to-one
relationship between object and image rays required for perfect imaging of
all object points, we speak of system aberrations. Finally, since every optical
system intercepts only a portion of the wavefront emerging from the object,
the image cannot be perfectly sharp. Even if the image were otherwise per-
fect, the effect of using a limited portion of the wavefront leads to diffraction
and a blurred image, which is said to be diffraction limited. This source of
imperfect image formation, discussed further in the sections under diffrac-
tion, represents a fundamental limit to the sharpness of an image that cannot
be entirely overcome. This difficulty rises from the wave nature of light. Only
in the unattainable limit of geometrical optics, where A — 0, would diffrac-
tion effects disappear entirely.

Reflecting or refracting surfaces that form perfect images are called
Cartesian surfaces. In the case of reflection, such surfaces are the conic sec-
tions, as shown in Figure 11. In each of these figures, the roles of object and
image points may be reversed by the principle of reversibility. Notice that in
Figure 11b, the image is virtual. In Figure 11c, the parallel reflected rays are
said to form an image “at infinity.” In each case, one can show that Fermat’s
principle, requiring isochronous rays between object and image points, leads
to a condition that is equivalent to the geometric definition of the correspond-
ing conic section.

Cartesian surfaces that produce perfect imaging by refraction may be
more complicated. Let us ask for the equation of the appropriate refracting sur-
face that images object point O at image point /, as illustrated in Figure 12.
There an arbitrary point P with coordinates (x, y) is on the required surface
2. The requirement is that every ray from O, like OPI, refracts and passes
through the image /. Another such ray is evidently OV, normal to the surface
at its vertex point V. By Fermat’s principle, these are isochronous rays. Since
the media on either side of the refracting surface are characterized by differ-
ent refractive indices, however, the isochronous rays are not equal in length.
The transit time of a ray through a medium of thickness x with refractive
index n is



Geometrical Optics

>

P(x, y)

<

Therefore, equal times imply equal values of the product nx, called the optical
path length. In the problem at hand, then, Fermat’s principle requires that

n,d, + nd; = n,s, + n;s; = constant (6)

where the distances are defined in Figure 12. In terms of the (x, y)-coordinates
of P, the first sum of Eq. (6) becomes

no(x* + yHOY2 + nfy? + (s, + s; — x)?]"/> = constant (7)

The constant in the equation is determined by the middle member of Eq. (6),
n,s, + n;s;, which can be calculated once the specific problem is defined.
Equation (7) describes the Cartesian ovoid of revolution shown in Figure 13a.

In most cases, however, the image is desired in the same optical medium
as the object. This goal is achieved by a lens that refracts light rays twice, once
at each surface, producing a real image outside the lens. Thus it is of particu-
lar interest to determine the Cartesian surfaces that render every object ray
parallel after the first refraction. Such rays incident on the second surface can
then be refracted again to form an image. The solutions to this problem are il-
lustrated in Figure 13b and c. Depending on the relative magnitudes of the
refractive indices, the appropriate refracting surface is either a hyperboloid
(n; > n,) or an ellipsoid (n, > n;), as shown.

The first of these corresponds to the usual case of an object in air. A
double hyperbolic lens then functions as shown in Figure 14. Note, however,
that the aberration-free imaging so achieved applies only to object point O
at the correct distance from the lens and on axis. For nearby points, imaging
is not perfect. The larger the actual object, the less precise is its image.
Because images of actual objects are not free from aberrations and because
hyperboloid surfaces are difficult to grind exactly, most optical surfaces are
spherical.® The spherical aberrations so introduced are accepted as a com-
promise when weighed against the relative ease of fabricating spherical sur-
faces. In the remainder of this chapter, we examine, in detail, spherical
reflecting and refracting surfaces and, more briefly, cylindrical reflecting
and refracting surfaces. Note that a plane surface can be treated as a special
case of a cylindrical or a spherical surface in the limit that the radius of cur-
vature R of either type of surface tends to infinity.

7 REFLECTION AT A SPHERICAL
SURFACE

Spherical mirrors may be either concave or convex relative to an object point O,
depending on whether the center of curvature C is on the same or opposite side
of the reflecting surface. In Figure 15 the mirror shown is convex, and two

3The refinement of lens construction using injection molding technology has eased the pro-
duction of lenses with aspherical surfaces.

Figure 12 Cartesian refracting surface
which images object point O at image point /.
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Figure 13 Cartesian refracting surfaces.
(a) Cartesian ovoid images O at I by refrac-
tion. (b) Hyperbolic surface images object
point O at infinity when O is at one focus
and n; > n,. (c) Ellipsoid surface images
object point O at infinity when O is at one
focus and n, > n;.
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Figure 14 Aberration-free imaging of
point object O by a double hyperbolic lens.
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Figure 15
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Reflection at a spherical
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rays of light originating at O are drawn, one normal to the spherical surface at its
vertex V and the other an arbitrary ray incident at P. The first ray reflects back
along itself; the second reflects at P as if from a plane tangent at P, satisfying the
law of reflection. The two reflected rays diverge as they leave the mirror. The in-
tersection of the two rays (extended backward) determines the image point /
conjugate to O.The image is virtual,located behind the mirror surface.

Object and image distances from the vertex are shown as s and s’, respec-
tively. A perpendicular of height 4 is drawn from P to the axis at Q. We seek a
relationship between s and s’ that depends only on the radius of curvature R of
the mirror. As we shall see, such a relation is possible only to first-order ap-
proximation of the sines and cosines of the angles made by the object and
image rays to the spherical surface. This means that in place of the expansions

3 5
R AT
sing = ¢ 3!+5!
and
2 4
1 % ..
cosp =1 o + Al + 8)

we consider the first terms only and write
sinp=¢ and cosp =1 9)

relations that can be accurate enough if the angle ¢ is small enough.* This ap-
proximation leads to first-order, or Gaussian, optics, after Karl Friedrich
Gauss, who in 1841 developed the foundations of the subject. Returning now
to the problem at hand, notice that two angular relationships may be ob-
tained from Figure 15, because the exterior angle of a triangle equals the sum
of its interior angles. These are

0=a+¢ and 20 =a + o

which combine to give
a—ao =20 (10)

Using the small-angle approximation, the angles of Eq. (10) can be replaced
by their tangents, yielding

M\
==

“4For example, for angles ¢ around 10°, the approximation leads to errors around 1.5%.
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where we have also neglected the axial distance VQ, small when angle ¢ is
small. Cancellation of /& produces the desired relationship,

- =-= (11)

If the spherical surface is chosen to be concave instead, the center of curva-
ture would be to the left. For certain positions of the object point O, it is then
possible to find a real image point also to the left of the mirror. In these cases,
the resulting geometric relationship analogous to Eq. (11) consists of terms
that are all positive. It is possible, by employing an appropriate sign conven-
tion, to represent all cases by the single equation

-+ = (12)

The sign convention to be used in conjunction with Eq. (12) is as fol-
lows. Assume the light propagates from left to right:

1. The object distance s is positive when O is to the left of V, corresponding
to a real object. When O is to the right, corresponding to a virtual object,
s is negative.

2. The image distance s' is positive when [ is to the left of V, corresponding
to a real image, and negative when [ is to the right of V, corresponding
to a virtual image.

3. The radius of curvature R is positive when C is to the right of V, corre-
sponding to a convex mirror, and negative when Ciis to the left of V, cor-
responding to a concave mirror.

These rules’ can be quickly summarized by noticing that positive object
and image distances correspond to real objects and real images and
that convex mirrors have positive radii of curvature. Applying Rule 2 to
Figure 15, we see that the general Eq. (12) becomes identical with Eq. (11),
a special case derived in conjunction with Figure 15. Virtual objects occur
only with a sequence of two or more reflecting or refracting elements and
are considered later.

The spherical mirror described by Eq. (12) yields, for a plane mirror
with R— 00, s’ = —s, as determined previously. The negative sign implies a
virtual image for a real object. Notice also in Eq. (12) that object distance and
image distance appear symmetrically, implying their interchangeability as
conjugate points. For an object at infinity, incident rays are parallel and
s’ = —R/2, as illustrated in Figure 16a and b for both concave (R < 0) and
convex (R > 0) mirrors. The image distance in each case is defined as the
focal length f of the mirrors. Thus,

R [ >0, concave mirror
== ’ . 13
f 2 { <0, convex mirror (13)
and the mirror equation can be written, more compactly, as
1 1 1
4+ === 14
s s f (14)

5 Although this set of sign conventions is widely used, the student is cautioned that other schemes
exist. No one with a continuing involvement in optics can hope to escape confronting other conventions,
nor should the matter be beyond the mental flexibility of the serious student to accommodate.
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Figure 16 Location of focal points (a)
and (b) and construction to determine
magnification (c) of a spherical mirror.
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The focal point F, located a focal length f from the vertex of the mirror, and
shown in Figure 16a and b, serves as an important construction point in graphi-
cal ray-tracing techniques, which we discuss following Example 1.

In Figure 16c, a construction is shown that allows the determination of
the transverse magnification. The object is an extended object of transverse
dimension 4,. The image of the top of the object arrow is located by two
rays whose behavior on reflection is known. The ray incident at the vertex
must reflect to make equal angles with the axis. The other ray is directed
toward the center of curvature along a normal and so must reflect back
along itself. The intersection of the two reflected rays occurs behind the
mirror and locates a virtual image of dimension #; there. Because of the
equality of the three angles shown, it follows that

ho _ hi

s s
The lateral magnification m is defined by the ratio of lateral image size to
corresponding lateral object size, so that

m| =—+=2 15
ml = 5= (1)
Extending the sign convention to include magnification, we assign a (+)
magnification to the case where the image has the same orientation as the
object and a (—) magnification where the image is inverted relative to the
object. To produce a (+) magnification in the construction of Figure 16¢,
where s’ must itself be negative, we modify Eq. (15) to give the general
form
s

m=- (16)

The following example illustrates the correct use of the sign convention.

Example 1

An object 3 cm high is placed 20 cm from (a) a convex and (b) a concave
spherical mirror, each of 10-cm focal length. Determine the position and na-
ture of the image in each case.

Solution
a. Convex mirror: f = —10cm and s = +20 cm.
1.1 1 fs (=10)(20)
— 4 — == — = = _667
sy F T T YT F T 20 = (<10 cm
s’ —6.67 1
= —— = —— = +0. = —
m p 20 0.333 3

The image is virtual (because s’ is negative), 6.67 cm to the right of the
mirror vertex, and is erect (because m is positive) and % the size of the
object, or 1 cm high.

b. Concave mirror: f = +10cm and s = +20 cm.

fs_ (10)(20)
= = = +
s s—f 20-10 20 cm
s 20
s 20

-1
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The image is real (because s’ is positive), 20 cm to the left of the mir-
ror vertex, and is inverted (because m is negative) and the same size as
the object, or 3 cm high. Image and object happen to be at 2f = 20 cm,
the center of curvature of the mirror.

The location and nature of the image formed by a mirror can be de-
termined by graphical ray-trace techniques. Figure 17 illustrates how three
key rays—Ilabeled 1,2, and 3—each leaving a point P at the tip of an object,
can be drawn to locate the conjugate image point P’. In fact, under the
conditions for which Egs. (12) through (16) are valid, the paths of any two
rays leaving P are sufficient to locate the conjugate image point P’. A third
ray serves as a convenient check on the accuracy of the first two chosen
rays. The three key rays discussed in connection with Figure 17 are chosen
as the basis of the graphical ray-trace technique because, once the mirror
center of curvature C, the focal point F, and vertex V are located along the
optical axis of a spherical mirror, these three rays can be drawn using only
a straightedge device. The conjugate image point P’ marks the tip of the
image—the entire image then lies between P’ and the point on the optical
axis directly above or below P’.

Refer to Figure 17a, b, and ¢ in connection with the following descrip-
tion of how the three key rays can be drawn. Note the difference in each ray

~ >z
3’ %
P 1
2
3 1 174
o ¢ F\E
2/ P
1
(a) (b)

©
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Figure 17 Ray diagrams for spherical
mirrors. (a) Real image, concave mirror. The
object distance is greater than the focal
length. (b) Virtual image, concave mirror. The
object distance is less than the focal length. (c)
Virtual image, convex mirror.
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trace, depending on the object location before or after points C and F, and on
the geometry of the mirror surface, concave or convex.

* Ray 1.This ray leaves point P as a ray parallel to the optical axis, strikes
the mirror, reflects and passes through the focal point F of a concave
mirror—as in Figure 17a and b. Or, as in Figure 17c, it strikes a convex
mirror and reflects as if it came from the focal point F behind the mir-
ror. In each case, after reflection this ray is labeled 1'.

® Ray 2. This ray leaves point P, passes through F, strikes a concave
mirror, and is reflected as a ray parallel to the optical axis, as in
Figure 17a. Or, as in Figure 17b, it leaves point P as if it is coming
from the point F to its left (dotted line), strikes the concave mirror,
and reflects as a parallel ray. Or, as in Figure 17c, for a convex mirror,
the ray leaves point P heading toward focal point F behind the
mirror, strikes the mirror, and reflects as a parallel ray. In each case,
after reflection, this ray is labeled 2.

® Ray 3.This ray leaves point P in Figure 17a, passes through point C for
the concave mirror, strikes the mirror, and reflects back along itself. Or,
as in Figure 17b—still for a concave mirror—ray 3 appears to come from
the point C to its left, strikes the mirror, and reflects back along itself.
Or, as in Figure 17c, for a convex mirror, it heads toward point C behind
the mirror, strikes the mirror, and reflects back along itself. In each case,
after reflection, this ray is labeled 3.

To understand how these rays locate the conjugate image point P’ that
marks the tip of the image, it is useful to imagine that these three rays arrive
at the eye of one viewing the image. For the case shown in Figure 17a, the
three rays 1’,2’, and 3’ intersect at a real image point as they progress away
from the mirror and toward the viewer. For the arrangements shown in
Figure 17b and 17c, the rays 1',2’, and 3’ appear to originate from a point
of intersection (a virtual image point) located behind the mirror. The real or
apparent point of intersection is interpreted as the emanation point of these
rays. That is, the viewer “sees” the tip of an image at point P’.

8 REFRACTION AT A SPHERICAL
SURFACE

We turn now to a similar treatment of refraction at a spherical surface, choos-
ing in this case the concave surface of Figure 18.Two rays are shown emanat-
ing from object point O. One is an axial ray, normal to the surface at its vertex
and so refracted without change in direction. The other ray is an arbitrary ray
incident at P and refracting there according to Snell’s law,

ny sin 0y = n, sin 6, 17
The two refracted rays appear to emerge from their common intersection, the
image point /. In triangle CPO, the exterior angle a = 6; + ¢. In triangle

CPI, the exterior angle o’ = 6, + ¢. Approximating for paraxial rays and
substituting for 6, and 6, in Eq. (17), we have

ni(a — ¢) = m(a' — @) (18)

Next, writing the tangents for the angles by inspection of Figure 18, where
again we may neglect the distance QV in the small angle approximation,

(2 2)-nf2-2)
M s R 2\ s R
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or
nq ny n — np
o Mo 19
s s’ R (19)

Employing the same sign convention as introduced for mirrors (i.e., positive dis-
tances for real objects and images and negative distances for virtual objects and
images), the virtual image distance s’ < 0 and the radius of curvature R < 0. If
these negative signs are understood to apply to these quantities for the case of
Figure 18, a general form of the refraction equation may be written as

ny ny n, —
+ == 20
s s’ R (20)

which holds equally well for convex surfaces. When R — o0, the spherical
surface becomes a plane refracting surface, and

o - ‘(Zf) (1)

where s’ is the apparent depth determined previously. For a real object
(s > 0), the negative sign in Eq. (21) indicates that the image is virtual.
The lateral magnification of an extended object is simply determined by
inspection of Figure 19. Snell’s law requires, for the ray incident at the
vertex V and in the small-angle approximation, n6; = n,0, or, using tan-

gents for angles,
ho\ _ (M
ny s =n S/
The lateral magnification is, then,
m=-—"1=-—1 (22)

where the negative sign is attached to give a negative value corresponding to
an inverted image. For the case of a plane refracting surface, Eq. (21) may

33

Figure 18 Refraction at a spherical sur-
face for which n, > n;.
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Figure 19 Construction to determine later-
al magnification at a spherical refracting
surface.

Figure 20 Example of refraction by spher-
ical surfaces. (All distances are in cm.)
(a) Refraction by a single spherical surface.
(b) Refraction by a thick lens. Subscripts 1
and 2 refer to refractions at the first and sec-
ond surfaces, respectively.
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S

be incorporated into Eq. (22), giving m = +1. Thus, the images formed by
plane refracting surfaces have the same lateral dimensions and orientation
as the object.

Example 2

As an extended example of refraction by spherical surfaces, refer to Figure 20.
In (a), a real object is positioned in air, 30 cm from a convex spherical sur-
face of radius 5 cm. To the right of the interface, the refractive index is that
of water. Before constructing representative rays, we first find the image dis-
tance and lateral magnification of the image, using Egs. (20) and (22).
Equation (20) becomes

1 . 133 133 -1
30 Sll 5

giving s’y = +40 cm. The positive sign indicates that the image is real and
so is located to the right of the surface, where real rays of light are re-
fracted. Equation (22) becomes

(1)(+40)
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indicating an inverted image, equal in size to that of the object. Figure 20a
shows the image, as well as several rays, which are now determined. In
this example we have assumed that the medium to the right of the spher-
ical surface extends far enough so that the image is formed inside it,
without further refraction. Let us suppose now (Figure 20b) that the
second medium is only 10 cm thick, forming a thick lens, with a second,
concave spherical surface, also of radius 5 cm. The refraction by the first
surface is, of course, unaffected by this change. Inside the lens, therefore,
rays are directed as before to form an image 40 cm to the right of the
first surface. However, these rays are intercepted and refracted by the
second surface to produce a different image, as shown. Since the con-
vergence of the rays striking the second surface is determined by the po-
sition of the first image, its location now specifies the appropriate object
distance to be used for the second refraction. We call the real image formed
by surface (1) a virtual object for surface (2). Then, by the sign convention es-
tablished previously, we make the virtual object distance, relative to the sec-
ond surface, a negative quantity when using Egs. (20) and (22). For the second
refraction, then, Eq. (20) becomes

1.33 1 1-133

— +
=30 s, =5
or s’ = +9 cm. The magnification, according to Eq. (22), is

(—1.33)(+9) +2

(1)(=30) 5

The final image is, then, 2/5 the lateral size of its (virtual) object and apears with
the same orientation. Relative to the original object, the final image is 2/5 as
large and inverted.

In general, whenever a train of reflecting or refracting surfaces is involved
in the processing of a final image, the individual reflections and/or refractions
are considered in the order in which light is actually incident upon them. The
object distance of the nth step is determined by the image distance for the
(n — 1)th step. If the image of the (n — 1) step is not actually formed, it
serves as a virtual object for the nth step.

9 THIN LENSES

We now apply the preceding method to discover the thin-lens equation. As in
the example of Figure 20, two refractions at spherical surfaces are involved.
The simplification we make is to neglect the thickness of the lens in compari-
son with the object and image distances, an approximation that is justified in
most practical situations. At the first refracting surface, of radius Ry,

n n n, —n
~1 + 7,2 " " (23)
$1 S1 R,

and at the second surface, of radius R,,
M m_m=—n (24)

S 8 R,

We have assumed that the lens faces the same medium of refractive index n;
on both sides. Now the second object distance, in general, is given by

S, =1 — (25)
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Figure 21 Lens action on plane wave-

fronts of light. (a) Converging lens (positive

focal length). (b) Diverging lens (negative
focal length).
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where ¢ is the thickness of the lens. Notice that this relationship produces the
correct sign of s,, as in Figure 20, and also when the intermediate image falls
inside or to the left of the lens. In the thin-lens approximation, neglecting ¢,

§) = =81 (26)

When this value of s, is substituted into Eq. (24) and Eqgs. (23) and (24) are
added, the terms n,/s] cancel and there results

nq ny 1 1 )
— 4 = = _ .
ST 8 (2 n1)<R1 R,

Now s, is the original object distance and s is the final image distance, so we
may drop their subscripts and write simply

11 (1 1
Syl m(—) 27)

N N ny

The focal length of the thin lens is defined as the image distance for an object
at infinity, or the object distance for an image at infinity, giving

1 nm—-—n/1 1

— == 1(—) (28)

f n Ry R,
Equation (28) is called the lensmaker’s equation because it predicts the focal
length of a lens fabricated with a given refractive index and radii of curvature
and used in a medium of refractive index n;. In most cases, the ambient

medium is air, and n; = 1. The thin-lens equation, in terms of the focal
length, is then

o= (29)

Wavefront analysis for plane wavefronts, as shown in Figure 21, indi-
cates that a lens thicker in the middle causes convergence, and one thinner in
the middle causes divergence of the incident parallel rays. The portion of the
wavefront that must pass through the thicker region is delayed relative to the
other portions. Converging lenses are characterized by positive focal lengths
and diverging lenses by negative focal lengths, as is evident from the figure,
where the images are real and virtual, respectively.

Sample ray diagrams for converging (or convex) and diverging (or con-
cave) lenses are shown in Figure 22. The thin lenses are best represented, for
purposes of ray construction, by a vertical line with edges suggesting the gen-
eral shape of the lens—ordinary arrowheads for converging lenses, inverted
arrowheads for diverging lenses. Graphical methods of locating images, as
with spherical mirrors in Figure 17, make use of three key rays. This procedure
is outlined next and illustrated in Figures 22 and 23. The three rays leaving the
tip of the object change direction due to refraction at the thin-lens interfaces.
The redirected rays can be used to locate the image.

* Ray I. A ray leaving the tip of the object, parallel to the optical axis, un-
dergoing refraction at the lens surfaces and passing through the right focal
point F of a converging lens, as in Figure 22a. Or, as in Figure 22b, a paral-
lel ray which refracts at the lens surfaces as if coming directly from the
left focal point F of a diverging lens.

® Ray 2. A ray leaving the tip of the object and passing through the left focal
point F of a converging lens, undergoing refraction at the lens surfaces,
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and emerging parallel to the axis as in Figure 22a. Or, as in Figure 22b, a
ray leaving the tip of the object, directed toward the right focal point F
of a diverging lens, undergoing refraction at the lens and emerging par-
allel to the axis.

® Ray 3. A ray leaving the tip of the object and passing directly through
the center of a converging or diverging lens, emerging unaltered, as in
Figure 22a or 22b.

The viewer, located at the far right in Figure 22a and 22b, receives these rays
as if they have come directly from an object and so “sees” the tip of the image
at the point where the backwards extensions of these rays either intersect or
appear to intersect. Any two rays are sufficient to locate the image; the third
ray may be drawn as a check on the accuracy of the graphical trace.

In constructing ray diagrams, as in Figure 22, observe that, except for the
central ray (ray 3), each ray refracted by a convex lens bends toward the axis
and each ray refracted by a concave lens bends away from the axis. From ei-
ther diagram, the angles subtended by object and image at the center of the
lens are seen to be equal. For either the real image RI in (a) or the virtual
image VI in (b), it follows that

and lateral magnification

N

N

hi

|m| = .

In accordance with the sign convention adopted here, the magnification
should be the negative of the ratio of the image and object distances since, in
case (a),s > 0,s" > 0, and m < 0 because the image is inverted; in case (b),

37

Figure 22 Ray diagrams for image forma-
tion by a convex lens (a) and a concave
lens (b).



38 Chapter 2

Geometrical Optics

1) 4 ) 4
RO,
F RI, Vi, F,
ROI Fl FZ \* ~ ///
N
\ N\
v A
(a)
(1) 4 2) A
VO,
F RI, RI,
RO; F Fl\\ F :
~ I
I~ ~ I
» :\\\ |
~N
<8
I~
NT~
N
v v >~
(b)

Figure 23 (a) Formation of a virtual image VI, by a two-element train of a convex lens (1) and
concave lens (2). (b) Formation of a real image RI, by a train of two convex lenses. The intermediate
image R/, serves as a virtual object VO, for the second lens.

s > 0,s" < 0,and m > 0. In either case, then,

s

=—-— 30

m=-= (30)

Further ray-diagram examples for a train of two lenses are illustrated in

Figure 23 and a calculation involving image formation in two lenses is given
in Example 3.

Example 3

Find and describe the intermediate and final images produced by a two-lens
system such as the one sketched in Figure 23a. Let f{ = 15cm, f, = 15 cm,
and their separation be 60 cm. Let the object be 25 cm from the first lens, as
shown.

Solution

The first lens is convex: f; = +15 cm, s; = 25 cm.

11 1 sif  (25)(15)

1 1. 1 . - — 4375
soos T ST 25515 cm
s 315
ny 51 725 1.5

Thus, the first image is real (because s is positive), 37.5 cm to the right of the
first lens, inverted (because m is negative), and 1.5 times the size of the object.
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The second lens is concave: f, = —15 cm. Since real rays of light diverge
from the first real image, it serves as a real object for the second lens, with
s, = 60 — 37.5 = +22.5 cm to the left of the lens. Then,

sf (22.5)(—15)

= = - -9
2T - f (225) - (—15) com
s -9
=-—==—-——=+0.
My = T s 04

Thus, the final image is virtual (because s) is negative), 9 cm to the left of
the seconds lens, erect with respect to its own object (because m is positive),
and 0.4 times its size. The overall magnification is given by m = mm,
= (=1.5)(0.4) = —0.6. Thus, the final image is inverted relative to the origi-
nal object and 6/10 its lateral size. All these features are exhibited qualita-
tively in the ray diagram of Figure 23a.

Table 1 and Figure 24 provide a convenient summary of image formation in
lenses and mirrors.

10 VERGENCE AND REFRACTIVE
POWER

Another way of interpreting the thin-lens equation is useful in certain appli-
cations, including optometry. The interpretation is based on two considera-
tions. In the thin-lens equation,

Sty g @1

TABLE 1 SUMMARY OF GAUSSIAN MIRROR AND LENS FORMULAS

Spherical surface Plane surface
1 1 1 R
—+— == = —— = —
s s f’ f 2 5 §
. s’
Reflection m=—-— m = +1

Concave: f > 0,R <0
Convex : f < 0,R>0

o onp npTm n
—+t = s'=——5
s s R ny
. . nys’
Refraction Single surface m=-— m= +1
n)s

Concave: R < 0
Convex : R > 0

1,11
s s f
1 n,—n 1 1
Refraction Thin lens = = g<f — 7>
f m R, R
S/
m=—>

s
Concave: f <0
Convex : f >0
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Figure 24 Summary of image formation by (a) spherical mirrors and (b) thin lenses. The location, nature, magnifi-
cation, and orientation of the image are indicated or suggested. The letters R and V refer to real and virtual, O and I
to object and image. Changes in elevation of the horizontal lines suggest the magnification in the various regions.

notice that (1) the reciprocals of distances in the left member add to give the
reciprocal of the focal length and (2) the reciprocals of the object and image
distances describe the curvature of the wavefronts incident at the lens and
centered at the object and image positions O and I, respectively. A plane
wavefront, for example, has a curvature of zero. In Figure 25 spherical waves
expand from the object point O and attain a curvature, or vergence, V,
given by 1/s, when they intercept the thin lens. On the other hand, once
refracted by the lens, the wavefronts contract, in Figure 25a, and expand
further, in Figure 25b, to locate the real and virtual image points shown. The
curvature, or vergence, V', of the wavefronts as they emerge from the lens is
1/s’. The change in curvature from object space to image space is due to the
refracting power P of the lens, given by 1/f. With these definitions, Eq. (31)
may be written

V+V =P (32)

Figure 25 Change in curvature of wavefronts on refraction by a thin lens. (a) Convex lens. (b) Concave lens.
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The units of the terms in Eq. (32) are reciprocal lengths. When the lengths

are measured in meters, their reciprocals are said to have units of diopters

(D). Thus, the refracting power of a lens of focal length 20 cm is said to be
1

0.2m
wave curvature or ray convergence rather than object and image distances.
Accordingly, the degree of convergence V' of the image rays is determined
by the original degree of convergence V of the object rays and the refract-
ing power P of the lens, that is, the power to change incident wave curva-
ture. Eq. (32) can also be applied to the case of refraction at a single
surface, Eq. (20), in which case the refractive indices in object and image
space need not be 1. In this event, the power of the refracting surface is
(ny — ny)/R.

This approach is useful for another reason. When thin lenses are placed
together, in contact, the focal length f of the combination, treated as a single
thin lens, can be found in terms of the focal lengths f1, f,,... of the individ-
ual lenses. For example, with two such lenses back-to-back, we write the lens
equations

= 5 diopters. This alternative point of view emphasizes the degree of

1 1 1 1 1 1
*+7=7 and *+7=7
stoost fi 2 55 [

Since the image distance for the first lens plays the role of the object distance
for the second lens, we may write

S, = —81
and, adding the two equations,

1 1 1 1 1

+o =+ =
st fi fa f

The reciprocals of the individual focal lengths, therefore, add to give the reci-
procal of the overall focal length f of the pair. In general, for several thin lens-
es, in direct contact,

=—+_—+_—+ - (33)

Expressed in diopters, the refractive powers simply add:
P=P +Py+ Py+ - (34)

In a nearsighted eye, the refracted (converging) power of the eye is
too great, so that a real image is formed in front of the retina. By reducing
the convergence with a number of diverging lenses placed in front of the
eye, until an object is clearly focused, an optometrist can determine the
net diopter specification of the single corrective lens needed by simply
adding the diopters of these test lenses. In a farsighted eye, the natural
converging power of the eye is not strong enough, and additional
converging power must be added in the form of spectacles with a converg-
ing lens.
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Figure 26 Construction used to derive
Newton’s equations for the thin lens.

Geometrical Optics

11 NEWTONIAN EQUATION
FOR THE THIN LENS

When object and image distances are measured relative to the focal points F
of a lens, as by the distances x and x’ in Figure 26, an alternative form of the
thin-lens equation results, called the Newtonian form. In the figure, the two
rays shown determine two right triangles, joined by the focal point, on each
side of the lens. Since each pair constitutes similar triangles, we may set up
proportions between sides that represent the lateral magnification:

hi f d h; x'
Z_)t oad =X
he X 0 m, f
Introducing a negative sign for the magnification, due to the inverted image,
__f__x
m=-_= 7 (35)

The two parts of Eq. (35) also constitute the Newtonian form of the thin-lens
equation,

xx' = f? (36)

This equation is somewhat simpler than Eq. (29) and is found to be more
convenient in certain applications.

12 CYLINDRICAL LENSES

Spherical lenses and mirrors with circular cross sections are far more com-
mon in optical systems than are cylindrical lenses. Nevertheless, cylindrical
lenses are important, for example, in the field of optometry for correcting the
visual defect known as astigmatism, as well as in novel visual displays where
it is useful to image points as lines. We close this chapter on geometrical op-
tics with a brief look at this special type of lens.

The optical axis for a spherical lens is an axis of symmetry since rotation
of the lens through an arbitrary angle about the optical axis leaves the lens
looking just as it did before the rotation. Because the orientation of the sur-
face curvature does not change in such a rotation, its optical behavior re-
mains unchanged. This rotational symmetry simplifies the analysis of the
imaging properties of such a spherical lens. On the other hand, a cylindrical
lens—shaped like a section of a soft drink can, sliced down the side from top
to bottom—Iacks rotational symmetry about its optical axis. As a consequence,
a cylindrical lens has asymmetric focusing properties, as will be seen later in
greater detail. Whereas a spherical lens produces a point image of a point
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object, a cylindrical lens produces a line image of a point object. Because of
these properties, a spherical lens is said to be stigmatic, and the cylindrical
lens astigmatic.

Consider first a spherical lens, as shown in Figure 27a and b. Orthogo-
nal vertical and horizontal axes are shown as solid diametrical lines through
the geometric lens center. Parallel rays of light passing through the vertical
axis (see Figure 27a) and through the horizontal axis (see Figure 27b) are
handled identically by the lens, converging them to a common focus at F.

The lens can be rotated through an arbitrary angle about its optical axis
with the same result. Thus, the focusing properties of a spherical lens are in-
variant to rotation about its central (optical) axis.

Next, consider the convex and concave cylindrical lenses shown in
Figure 28. One surface of the lens is cylindrical while the opposite is plane.®
Thus, the curved surface has a definite, finite radius of curvature, whereas the
plane surface has an infinite radius of curvature. In Figure 29, two vertical
slices or sections are shown perpendicular to the axis of a convex cylindrical
lens. Through each section, three representative rays are drawn. The opera-
tion of this lens is clearly asymmetric. Focusing occurs for rays along a verti-
cal section but not for rays along a horizontal section, where the lens presents
no curvature. Thus, rays 1, 2 and 3 focus to point A, and rays 4, 5 and 6 focus
to point B. However, there is no focusing of rays in a horizontal section, such
as the pairs of rays 1 and 4,2 and 5, or 3 and 6. Other vertical sections would
produce other points along the focused line image AB in the same way. No-
tice that the line image AB so formed is always parallel to the cylinder axis.
This important feature is also shown in Figure 30, where the line image is real
for a cylindrical convex lens and virtual for a cylindrical concave lens. From
these figures, it is evident that the length of the line image is equal to the axial
length of the lens, assuming that rays of light parallel to the optical axis enter
along the entire extent of the lens. If an aperture is placed in front of the lens
to limit the bundle of light rays through the lens, the height of the line image
is just the aperture dimension along the cylinder axis, or the effective height of
the lens.

In Figure 29, the line image formed is the result of an object point “at
infinity,” which produces parallel rays at the lens. In Figure 31, the object
point O is near the lens, producing diverging rays of light incident on the
lens. Still, if the lens is thin, focusing occurs along the vertical sections, as
shown. Rays 1 and 3, in the left vertical section of Figure 31, focus at A;
rays 2 and 4 in the right vertical section focus at B. However, no focusing
occurs for rays 1, 5, and 2 along the horizontal section. Because of the
divergence of the rays entering the lens, however, the length of the focused
line image A B is no longer equal to the effective length CL of the lens. The
divergence of the extreme rays at each end of the lens now determines an
image that is longer than the length of the lens. The image length AB can
be found from a simple, geometrical argument that is apparent in Figure 32a,
a view of the central horizontal section in Figure 31 as seen from above. If
the effective length of the cylindrical lens is CL, then by similar triangles it
follows that

Q_s-i—s’
CL K

To be more precise, we are speaking of a plano-convex or plano-concave cylindrical lens as
shown in Figure 28. Generally speaking, both surfaces of the lens might be cylindrical. In such a case,
the behavior of the lens as a whole, due to the addition of the powers of the two surfaces, may not re-
duce to that of the simple plano-convex or plano-concave lens described here.
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Figure 27 Parallel rays of light focused by a
spherical lens. Because of its axis of symme-
try relative to rotation about an axis through
its center, the lens treats (a) vertical and (b)
horizontal fans of rays similarly, producing in
each case a point image at the same location.
Each ray refracts twice through the lens, once
at each surface. For simplicity, only one re-
fraction is shown.
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Figure 28 Cylindrical lenses shown as sec-
tions of a solid and hollow cylindrical rod.

Figure 29 Focusing property of a convex
cylindrical lens. Rays through a vertical sec-
tion, such as rays 1, 2, and 3, come to a com-
mon focus, but rays through a horizontal
section, such as rays 1 and 4, do not. Parallel
rays form a line image that is parallel to the
cylinder axis. For simplicity, refraction is
shown only at the front surface and spherical
aberration for non-paraxial rays is ignored.
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or

AB = <S J; SI)CL (37)

Subject to our sign convention, this relation is a general form for the plano-
cylindrical lens that handles all cases, with s and s’ object and image distances,
respectively, and AB always positive.

Example 4

A thin plano-cylindrical lens in air has a radius of curvature of 10 cm, a re-
fractive index of 1.50, and an axial length of 5 cm. Light from a point object is
incident on the convex cylindrical surface from a distance of 25 cm to the left
of the lens. Find the position and length of the line image formed by the lens.

Solution

As given,s = 25 cm, R = 10 cm, n(lens) = 1.50 and CL = 5 cm. Using the
spherical surface refraction equation (see Table 1),
m Ny T m

s s’ R

and

+/
ABz(S SS>CL

together with the sign convention—positive for real objects and images, neg-
ative for virtual objects and images, positive R for convex surface.

. . 1
Entering values, we have for the first convex surface at entry, — +

25
1.50 1.50 — 1.00
— = 10 , which gives s = 150 cm, real. And for the second
s

Line
A image B

Cylinder
axis
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Figure 30 Formation of line images by cylindrical lenses for light incident from a distant object. In (a) the convex lens forms a real
image. In (b), the concave lens forms a virtual image. In either case, the line image is parallel to the cylinder axis.

Parallel to
cylinder axis

1.50 1.0
(plane) surface at exit, we obtain — 150 + o 0, which gives s’ = 100 cm.
25 + 100
Then with Eq. (37), AB = (25)5 cm = 25 cm.

Thus, the line image is parallel to the cylindrical axis, enlarged to 25 cm, and
located 1 m from the lens. If the lens is rotated about its optical axis, the line
image also rotates, remaining always parallel to the cylindrical axis.

Looking again at Figure 31, imagine a screen placed on the exit side of
the lens so as to capture the light from the lens. We have argued that when the
screen is at the distance s’ from the lens, one sees a focused line image AB on
the screen, in this case with a horizontal orientation. As the screen is moved

Figure 31 Formation of a line image AB by a
convex cylindrical lens when the object is a
point O at a finite distance from the lens. In
this case, the line image AB is longer than the
axial length of the lens, CL.
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Figure 32 (a) Light rays in a top view of
the horizontal (nonfocusing) section of the
lens in Figure 31. (b) Light rays in a side
view of the vertical (focusing) section of the
lens in Figure 31.

PROBLEMS
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further than s’ from the lens, one sees an unfocused blur that has the general
shape of the aperture—either of the rectangular cross section of the lens
alone or of the lens with an aperture placed against it. Further, it should be
evident from Figure 31 that, as a screen, initially positioned just behind the
lens, moves toward the line image AB, the horizontal dimension (width) of
the blur increases and its vertical dimension (height) decreases. As the screen
moves beyond the line image, its width continues to increase but its height
now also increases due to the divergence of the rays after focusing. If an aper-
ture placed in front of the lens is circular, these blur images are elliptical in
shape, with changing major and minor axes formed by the width and height
of the blur. If the aperture is square, the blurs are rectangular in shape.
Widths and heights of the blur pattern can be found at any position of the
screen using the geometry apparent in Figure 32a and b, respectively. This
behavior can be observed easily in the laboratory.

Up to this point we have been dealing with a cylindrical lens whose
axis is either horizontal or vertical. Of course, the cylinder axis can be ori-
ented at any angle. An astigmatic eye, for example, while it possesses pre-
dominantly spherical optics, might have a cylindrical axis component whose
axis could be horizontal, vertical, or some angle in between. To deal with
cylindrical lenses and astigmatism in a general way, then, we must be able to
determine the effect of combining cylindrical lenses having arbitrary orien-
tations with each other and with spherical lenses. It turns out that two cylin-
drical lenses can produce the same effect as a sphero-cylindrical lens. Lens
prescriptions for vision correction are, in fact, expressed in terms of combi-
nations of spherical and cylindrical lenses. This subject is treated further
elsewhere.’

1 Derive an expression for the transit time of a ray of light 4 Determine the minimum height of a wall mirror that will

permit a 6-ft person to view his or her entire height.

that travels a distance x; through a medium of index n;, a
distance x, through a medium of index n,,..., and a dis-
tance x,, through a medium of index #,,. Use a summation
to express your result.

Deduce the Cartesian oval for perfect imaging by a refract-
ing surface when the object point is on the optical x-axis 20
cm from the surface vertex and its conjugate image point
lies 10 cm inside the second medium. Assume the refracting
medium to have an index of 1.50 and the outer medium to
be air. Find the equation of the intersection of the oval with
the xy-plane, where the origin of the coordinates is at the
object point. Generate a table of (x, y)-coordinates for the
surface and plot, together with sample rays.

A double convex lens has a diameter of 5 cm and zero thick-
ness at its edges. A point object on an axis through the cen-
ter of the lens produces a real image on the opposite side.
Both object and image distances are 30 cm, measured from
a plane bisecting the lens. The lens has a refractive index of
1.52. Using the equivalence of optical paths through the
center and edge of the lens, determine the thickness of the
lens at its center.

Sketch rays from the top and bottom of the person, and
determine the proper placement of the mirror such that
the full image is seen, regardless of the person’s distance
from the mirror.

A ray of light makes an angle of incidence of 45° at the cen-
ter of the top surface of a transparent cube of index 1.414.
Trace the ray through the cube.

To determine the refractive index of a transparent plate of
glass, a microscope is first focused on a tiny scratch in the
upper surface, and the barrel position is recorded. Upon
further lowering the microscope barrel by 1.87 mm, a fo-
cused image of the scratch is seen again. The plate thickness
is 1.50 mm. What is the reason for the second image, and
what is the refractive index of the glass?

A small source of light at the bottom face of a rectangular
glass slab 2.25 cm thick is viewed from above. Rays of light
totally internally reflected at the top surface outline a circle
of 7.60 cm in diameter on the bottom surface. Determine
the refractive index of the glass.

’See F. L. Pedrotti and L. S. Pedrotti, Optics and Vision (Upper Saddle River, N. I.: Prentice

Hall, Inc., 1998).
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Figure 33

Show that the lateral displacement s of a ray of light pene-
trating a rectangular plate of thickness ¢ is given by

_ tsin(01 - 02)
B cos 6,

where 6, and 6, are the angles of incidence and refraction, re-
spectively. Find the displacement when t = 3 cm, n = 1.50,
and 6; = 50°.

A meter stick lies along the optical axis of a convex mirror
of focal length 40 cm, with its nearer end 60 cm from the mir-
ror surface. How long is the image of the meter stick?

A glass hemisphere is silvered over its curved surface. A
small air bubble in the glass is located on the central axis
through the hemisphere 5 cm from the plane surface. The
radius of curvature of the spherical surface is 7.5 cm, and
the glass has an index of 1.50. Looking along the axis into
the plane surface, one sees two images of the bubble. How
do they arise and where do they appear?

Figure 34 Problem 10

A concave mirror forms an image on a screen twice as large
as the object. Both object and screen are then moved to
produce an image on the screen that is three times the size
of the object. If the screen is moved 75 cm in the process,
how far is the object moved? What is the focal length of the
mirror?

A sphere 5 cm in diameter has a small scratch on its surface.
When the scratch is viewed through the glass from a position
directly opposite, where does the scratch appear and what is
its magnification? Assume n = 1.50 for the glass.

Problem 7

13

14

15

16

17

18

a. At what position in front of a spherical refracting surface
must an object be placed so that the refraction produces
parallel rays of light? In other words, what is the focal length
of a single refracting surface?

b. Since real object distances are positive, what does your
result imply for the cases n, > n; and n, < ny?

A small goldfish is viewed through a spherical glass fish-
bowl 30 cm in diameter. Determine the apparent position
and magnification of the fish’s eye when its actual position
is (a) at the center of the bowl and (b) nearer to the oberver,
halfway from center to glass, along the line of sight. As-
sume that the glass is thin enough so that its effect on the
refraction may be neglected.

A small object faces the convex spherical glass window of a
small water tank. The radius of curvature of the window is 5
cm. The inner back side of the tank is a plane mirror, 25 cm
from the window. If the object is 30 cm outside the window,
determine the nature of its final image, neglecting any re-
fraction due to the thin glass window itself.

;R=50m

Tank
| n=~4/3
|
~— 30 cm—=—25 cm—

Window

@0

Figure 35 Problem 15

A plano-convex lens having a focal length of 25.0 cm is to
be made with glass of refractive index 1.520. Calculate the
radius of curvature of the grinding and polishing tools to be
used in making this lens.

Calculate the focal length of a thin meniscus lens whose spher-
ical surfaces have radii of curvature of magnitude 5 and 10 cm.
The glass is of index 1.50. Sketch both positive and negative
versions of the lens.

One side of a fish tank is built using a large-aperture thin lens
made of glass (n = 1.50). The lens is equiconvex, with radii of
curvature 30 cm. A small fish in the tank is 20 cm from the
lens. Where does the fish appear when viewed through the
lens? What is its magnification?
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Two thin lenses have focal lengths of —5 and +20 cm. Deter-
mine their equivalent focal lengths when (a) cemented to-
gether and (b) separated by 10 cm.

Two identical, thin, plano-convex lenses with radii of curva-
ture of 15 cm are situated with their curved surfaces in con-
tact at their centers. The intervening space is filled with oil
of refractive index 1.65. The index of the glass is 1.50. Deter-
mine the focal length of the combination. (Hint: Think of
the oil layer as an intermediate thin lens.)

Oiln = 1.65

Vlzl‘S\

IRI'=15cm

Figure 36 Problem 20

An eyepiece is made of two thin lenses each of +20-mm
focal length, separated by a distance of 16 mm.

a. Where must a small object be positioned so that light
from the object is rendered parallel by the combination?

b. Does the eye see an image erect relative to the object?
Is it magnified? Use a ray diagram to answer these ques-
tions by inspection.

A diverging thin lens and a concave mirror have focal
lengths of equal magnitude. An object is placed (3/2)f from

X_f
A 4

> 3f—>|

o

|
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Figure 37 Problem 22
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the diverging lens, and the mirror is placed a distance 3f on
the other side of the lens. Using Gaussian optics, deter-
mine the final image of the system, after two refractions (a)
by a three-ray diagram and (b) by calculation.

23 A small object is placed 20 cm from the first of a train of

24

three lenses with focal lengths, in order, of 10, 15, and 20 cm.
The first two lenses are separated by 30 cm and the last two
by 20 cm. Calculate the final image position relative to the
last lens and its linear magnification relative to the original
object when (a) all three lenses are positive, (b) the middle
lens is negative, (c) the first and last lenses are negative.
Provide ray diagrams for each case.

A convex thin lens with refractive index of 1.50 has a focal
length of 30 cm in air. When immersed in a certain trans-
parent liquid, it becomes a negative lens with a focal
length of 188 cm. Determine the refractive index of the
liquid.

25 It is desired to project onto a screen an image that is four

times the size of a brightly illuminated object. A plano-
convex lens with n = 1.50 and R = 60 cm is to be used.
Employing the Newtonian form of the lens equations, deter-
mine the appropriate distance of the object and screen from
the lens. Is the image erect or inverted? Check your results
using the ordinary lens equations.

26 Three thin lenses of focal lengths 10 cm, 20 cm, and

27

—40 cm are placed in contact to form a single compound
lens.

a. Determine the powers of the individual lenses and that
of the unit, in diopters.

b. Determine the vergence of an object point 12 cm from
the unit and that of the resulting image. Convert the re-
sult to an image distance in centimeters.

A lens is moved along the optical axis between a fixed
object and a fixed image screen. The object and image
positions are separated by a distance L that is more than
four times the focal length of the lens. Two positions of
the lens are found for which an image is in focus on the
screen, magnified in one case and reduced in the other. If
the two lens positions differ by distance D, show that the
focal length of the lens is given by f = (L2 — D?)/4L.
This is Bessel’s method for finding the focal length of a
lens.
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Figure 38 Problem 27
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An image of an object is formed on a screen by a lens. Leav-
ing the lens fixed, the object is moved to a new position and
the image screen moved until it again receives a focused
image. If the two object positions are S; and S, and if the
transverse magnifications of the image are M, and M,, re-
spectively, show that the focal length of the lens is given by

(S — 81)

(L_L)
M, M,

This is Abbe’s method for finding the focal length of a lens.

f=

Derive the law of reflection from Fermat’s principle by min-
imizing the distance of an arbitrary (hypothetical) ray from
a given source point to a given receiving point.

n

HOV

30

3
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Determine the ratio of focal lengths for two identical, thin,
plano-convex lenses when one is silvered on its flat side and
the other on its curved side. Light is incident on the unsil-
vered side.

Show that the minimum distance between an object and its
image, formed by a thin lens, is 4f. When does this occur?

A ray of light traverses successively a series of plane inter-
faces, all parallel to one another and separating regions of
differing thickness and refractive index.

a. Show that Snell’s law holds between the first and last re-
gions, as if the intervening regions did not exist.

b. Calculate the net lateral displacement of the ray from
point of incidence to point of emergence.

Figure 39 Problem 32

A parallel beam of light is incident on a plano-convex lens
that is 4 cm thick. The radius of curvature of the spherical
side is also 4 cm. The lens has a refractive index of 1.50 and
is used in air. Determine where the light is focused for light
incident on each side.

A spherical interface, with radius of curvature 10 cm, sepa-
rates media of refractive index 1 and %. The center of curva-
ture is located on the side of the higher index. Find the focal
lengths for light incident from each side. How do the results
differ when the two refractive indices are interchanged?
An airplane is used in aerial surveying to make a map of
ground detail. If the scale of the map is to be 1:50,000 and the
camera used has a focal length of 6 in., determine the proper
altitude for the photograph.

Light rays emanating in air from a point object on axis
strike a plano-cylindrical lens with its convex surface facing
the object. Describe the line image by length and location if
the lens has a radius of curvature of 5 cm, a refractive index
of 1.60, and an axial length of 7 cm. The point object is 15 cm
from the lens.

37

38

39

40

A plano-cylindrical lens in air has a curvature of 15 cm and an
axial length of 2.5 cm. The refractive index of the lens is
1.52. Find the position and length of the line image formed
by the lens for a point object 20 cm from the lens. Light from
the object is incident on the convex cylindrical surface of
the lens.

A plano-cylindrical lens in air has a radius of curvature of
10 cm, a refractive index of 1.50, and an axial length of 5 cm.
Light from a point object is incident on the concave, cylin-
drical surface from a distance of 25 cm to the left of the lens.
Find the position and length of the image formed by the
lens.

A plano-concave cylindrical lens is used to form an image
of a point object 20 cm from the lens. The lens has a refrac-
tive index of 1.50, a radius of curvature of 20 cm, and an
axial length of 2 cm. Describe as completely as possible the
line image of the point.

Consider the plano-convex cylindrical lens in problem 36. If
the point object is only 6 cm from the lens, describe the line
image.



