Physics 322: Common EM integrals

Sept. 2009
1.

$$
\begin{equation*}
\left.\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left|x+\sqrt{x^{2}+a^{2}}\right|+C=\sinh ^{-1}\left(\frac{x}{a}\right)\right)+\ln a+C \tag{1}
\end{equation*}
$$

The trick to this one is the inverse trig substitution $x=a \tan \theta$ followed by the "there is no way you would guess this" substitution $u=\tan \theta+\sec \theta$ (my 1st year calc textbook says that this should be committed to memory and I have it underlined). You then need trig functions to work out the final indefinite integral.
Here is what it looks like

$$
\begin{align*}
\text { let } x & =a \tan \theta=a \frac{\sin \theta}{\cos \theta} \tag{2}\\
d x & =a d \theta \frac{(\cos \theta)(\cos \theta)-(\sin \theta)(-\sin \theta)}{\cos ^{2} \theta}=\frac{a}{\cos ^{2} \theta} d \theta=a \sec ^{2} \theta d \theta \tag{3}\\
\int \frac{d x}{\sqrt{x^{2}+a^{2}}} & =\int \frac{d \theta a \sec ^{2} \theta}{\sqrt{a^{2} \tan ^{2} \theta+a^{2}}}=\int \frac{d \theta \sec ^{2} \theta}{\sec \theta}=\int d \theta \sec \theta \tag{4}
\end{align*}
$$

Prior to the 2 nd substitution multiply by $(\sec \theta+\tan \theta) /(\sec \theta+\tan \theta)$.

$$
\begin{align*}
& \text { let } u=\tan \theta+\sec \theta, d u=\left(\sec ^{2} \theta+\sec \theta \tan \theta\right) \tag{5}\\
& \qquad \int d \theta \frac{\sec ^{2} \theta+\sec \theta \tan \theta}{\sec \theta+\tan \theta}=\int \frac{d u}{u}=\ln |u|+C \tag{6}
\end{align*}
$$

Often the absolute value signs aren't included. To a certain extent they must be if you are ever evaluating the integral for $u<0$. If you are in the $u<0$ region the absolute value signs imply an extra negative sign.

$$
\begin{equation*}
\frac{d}{d u} \ln |u|=\frac{d}{d u} \ln (-u)=\frac{1}{-u}(-1)=\frac{1}{u}(u<0) . \tag{7}
\end{equation*}
$$

So we see that $\ln |u|$ is an antiderivative of $1 / u$ in the $u<0$ region.
Now $u=\sec (\arctan (x / a))+\tan (\arctan (x / a))$. I find the easiest way to evaluate these combinations of forward and inverse trig functions is to draw a triangle. So in the first term if the tangent is x divided by a draw a right-angled triangle with the "opposite" side equal to x and the "adjacent" side equal to a. This means the hypotenuse must be $\sqrt{x^{2}+a^{2}}$ and the secant (hypotenuse over adjacent) is $\sqrt{x^{2}+a^{2}} / a$. The other one is easy. So

$$
\begin{equation*}
\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left|\frac{x}{a}+\frac{\sqrt{x^{2}+a^{2}}}{a}\right|+C=\ln \left|x+\sqrt{x^{2}+a^{2}}\right|-\ln a+C^{\prime} \tag{8}
\end{equation*}
$$

The inverse hyperbolic sine form was pointed out to me by T. Huard who found it through Maple. I admit I had no idea what an inverse hyperbolic sine was. Here is the definition from my 1st year calculus book

$$
\begin{equation*}
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \tag{9}
\end{equation*}
$$

which you would obtain from solving

$$
\begin{equation*}
\sinh y=\frac{e^{y}-e^{-y}}{2}=x \tag{10}
\end{equation*}
$$

And guess what... we use hyperbolic sines and cosines as separable solutions of Laplace's equation in Cartesian coordinates!

$$
\begin{equation*}
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}=\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}+C \tag{11}
\end{equation*}
$$

An inverse trig substitution with $x=a \tan \theta$. Then the integral is just $\frac{1}{a^{2}} \sin \theta$.
3.

$$
\begin{equation*}
\int \frac{d x x}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}=-\frac{1}{\sqrt{x^{2}+a^{2}}}+C \tag{12}
\end{equation*}
$$

The substitution $u=x^{2}$ reduces this to "elementary" form. You have taken this derivative when you calculate the gradient of $1 / r$ in Cartesian coordinates.
4.

$$
\begin{equation*}
\int \frac{d x x^{2}}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}}=-\frac{x}{\sqrt{x^{2}+a^{2}}}+\ln \left|x+\sqrt{x^{2}+a^{2}}\right| \tag{13}
\end{equation*}
$$

Can get it by parts using a couple of the previous results.
5.

$$
\begin{equation*}
\int \frac{d x x}{\left(a^{2}-b x\right)^{3 / 2}}=\frac{2 x}{b \sqrt{a^{2}-b x}}+\frac{4 \sqrt{a^{2}-b u}}{b^{2}} \tag{14}
\end{equation*}
$$

This comes up in Newton's integral. Again integrate by parts to eliminate $U=x$ in the numerator.

