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1.
∫

dx√
x2 + a2

= ln |x +
√

x2 + a2| + C = sinh−1

(

x

a
)

)

+ ln a + C (1)

The trick to this one is the inverse trig substitution x = a tan θ followed by the “there is no
way you would guess this” substitution u = tan θ +sec θ (my 1st year calc textbook says that
this should be committed to memory and I have it underlined). You then need trig functions
to work out the final indefinite integral.

Here is what it looks like

let x = a tan θ = a
sin θ

cos θ
(2)

dx = adθ
(cos θ)(cos θ) − (sin θ)(− sin θ)

cos2 θ
=

a

cos2 θ
dθ = a sec2 θ dθ (3)

∫

dx√
x2 + a2

=

∫

dθ a sec2 θ√
a2 tan2 θ + a2

=

∫

dθ sec2 θ

sec θ
=

∫

dθ sec θ (4)

Prior to the 2nd substitution multiply by (sec θ + tan θ)/(sec θ + tan θ).

let u = tan θ + sec θ, du = (sec2 θ + sec θ tan θ) (5)
∫

dθ
sec2 θ + sec θ tan θ

sec θ + tan θ
=

∫

du

u
= ln |u| + C (6)

Often the absolute value signs aren’t included. To a certain extent they must be if you are
ever evaluating the integral for u < 0. If you are in the u < 0 region the absolute value signs
imply an extra negative sign.

d

du
ln |u| =

d

du
ln(−u) =

1

−u
(−1) =

1

u
(u < 0). (7)

So we see that ln |u| is an antiderivative of 1/u in the u < 0 region.

Now u = sec(arctan(x/a)) + tan(arctan(x/a)). I find the easiest way to evaluate these com-
binations of forward and inverse trig functions is to draw a triangle. So in the first term if
the tangent is x divided by a draw a right-angled triangle with the “opposite” side equal to
x and the “adjacent” side equal to a. This means the hypotenuse must be

√
x2 + a2 and the

secant (hypotenuse over adjacent) is
√

x2 + a2/a. The other one is easy. So

∫

dx√
x2 + a2

= ln

∣

∣

∣

∣

∣

x

a
+

√
x2 + a2

a

∣

∣

∣

∣

∣

+ C = ln
∣

∣

∣x +
√

x2 + a2

∣

∣

∣ − ln a + C ′ (8)

The inverse hyperbolic sine form was pointed out to me by T. Huard who found it through
Maple. I admit I had no idea what an inverse hyperbolic sine was. Here is the definition from
my 1st year calculus book

sinh−1 x = ln(x +
√

x2 + 1) (9)

which you would obtain from solving

sinh y =
ey − e−y

2
= x (10)

And guess what... we use hyperbolic sines and cosines as separable solutions of Laplace’s
equation in Cartesian coordinates!



2.
∫

dx

(x2 + a2)
3

2

=
x

a2
√

x2 + a2
+ C (11)

An inverse trig substitution with x = a tan θ. Then the integral is just 1

a2 sin θ.

3.
∫

dxx

(x2 + a2)
3

2

= − 1√
x2 + a2

+ C (12)

The substitution u = x2 reduces this to “elementary” form. You have taken this derivative
when you calculate the gradient of 1/r in Cartesian coordinates.

4.
∫

dxx2

(x2 + a2)
3

2

= − x√
x2 + a2

+ ln
∣

∣

∣x +
√

x2 + a2

∣

∣

∣ (13)

Can get it by parts using a couple of the previous results.

5.
∫

dxx

(a2 − bx)3/2
=

2x

b
√

a2 − bx
+

4
√

a2 − bu

b2
(14)

This comes up in Newton’s integral. Again integrate by parts to eliminate U = x in the
numerator.


