
＠theexpertta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accordance with Expert TA＇s Terms of Service．copying this information to any solutions

[^0]
\square都 －正
 － T －

 $+$

ld lines．

\qquad

\qquad
\square

Part（e）In which of the directions that correctly answer part（d）is the magnetic force on the wire directed upward？
MultipleChoice ：

Part（f）If the wire is oriented so that the current flows in the direction you chose for part（e），what would the mass per unit length of the wire，μ ， need to be for the magnetic force to balance the weight of the wire？Give you answer in units of grams per meter．路

 ，

@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

What is the magnitude of the force (in N) between 25 m of these wires?
Numeric : A numeric value is expected and not an expression.
$F=$ \qquad

Problem 6: Two very long, parallel wires are separated by $d=0.095 \mathrm{~m}$. The first wire carries a current of $I_{1}=0.55 \mathrm{~A}$. The second wire carries a current of $I_{2}=0.85 \mathrm{~A}$.
richard.sonnenfeld@nmt.edu

@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.
Part (a) Express the magnitude of the force between the wires per unit length, f, in terms of I_{1}, I_{2}, and d.
Expression :
$f=$ \qquad

Select from the variables below to write your expression. Note that all variables may not be required.
$\boldsymbol{\alpha}, \boldsymbol{\beta}, \mu_{\mathbf{0}}, \boldsymbol{\pi}, \boldsymbol{\theta}, \mathbf{d}, \mathbf{g}, \mathbf{h}, \mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}, \ln (\mathbf{2}), \mathbf{m}, \mathbf{P}, \mathbf{t}, \mathbf{x}$

Part (b) Calculate the numerical value of f in N / m.
Numeric : A numeric value is expected and not an expression.
$f=$ \qquad

Part (c) Is the force repulsive or attractive?
MultipleChoice :

1) Attractive.
2) Repulsive.

Part (d) Express the minimal work per unit length needed to separate the two wires from d to $2 d$.
Expression :
$\boldsymbol{w}=$ \qquad

Select from the variables below to write your expression. Note that all variables may not be required.
$\boldsymbol{\alpha}, \boldsymbol{\beta}, \mu_{\mathbf{0}}, \boldsymbol{\pi}, \boldsymbol{\theta}, \mathbf{d}, \mathbf{g}, \mathbf{h}, \mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}, \ln (\mathbf{2}), \mathbf{m}, \mathbf{P}, \mathbf{t}, \mathbf{x}$

Part (e) Calculate the numerical value of w in J / m.
Numeric : A numeric value is expected and not an expression.
$w=$ \qquad

Problem 7: A rectangular loop with $L_{1}=0.75 \mathrm{~m}$ and $L_{2}=0.55 \mathrm{~m}$ is sitting in a magnetic field $B=0.45 \mathrm{~T}$ as shown in the figure. There is a counterclockwise current $I=$ 0.45 A in the loop.
richard.sonnenfeld@nmt.edu

© (heexpertta.com
@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Calculate the numerical value of the total torque in $\mathrm{N} \cdot \mathrm{m}$.
Numeric : A numeric value is expected and not an expression.
$\tau=$ \qquad

Problem 8: The lengthwise cross-section of a cylindrical coil of wire carrying a current of 8.11 A is shown. The coil has n evenly-spaced turns per unit length.
richard.sonnenfeld@nmt.edu

@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Part (a) Determine the value, in microtesla meters, of the line integral of $\vec{B} \cdot \mathrm{~d} \vec{\ell}$ for path A.
Numeric : A numeric value is expected and not an expression.
$\oint_{A} \vec{B} \cdot \mathrm{~d} \vec{\ell}=$ \qquad $\mu \mathrm{T} \cdot \mathrm{m}$

Part (b) Determine the value, in microtesla meters, of the line integral of $\vec{B} \cdot \mathrm{~d} \vec{\ell}$ for path B.
Numeric : A numeric value is expected and not an expression.
$\oint_{B} \vec{B} \cdot \mathrm{~d} \vec{\ell}=$ \qquad $\mu \mathrm{T} \cdot \mathrm{m}$

Part (c) Determine the value, in microtesla meters, of the line integral of $\vec{B} \cdot \mathrm{~d} \vec{\ell}$ for path C.
Numeric : A numeric value is expected and not an expression.
$\oint_{C} \vec{B} \cdot \mathrm{~d} \vec{\ell}=$ \qquad $\mu \mathrm{T} \cdot \mathrm{m}$

Part (d) Determine the value, in microtesla meters, of the line integral of $\vec{B} \cdot \mathrm{~d} \vec{\ell}$ for path D.
Numeric : A numeric value is expected and not an expression.
$\oint_{D} \vec{B} \cdot \mathrm{~d} \vec{\ell}=$ \qquad $\mu \mathrm{T} \cdot \mathrm{m}$

Problem 9: The diagram to the right represents four different oriented Amperian Problem 9: The diagram to the right represents four different oriented Amperian
loops that are located in the plane of the image. Electric currents that pass through the
plane of the image are indicated.

@theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may

 the plane of the image. Electric currents that pass through the
abated. \square

\qquad

Problem 10: Four current carrying wires are arranged in the corners of a square as
shown in the picture. @theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of
Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result
in termination of your Expert TA Account. @theexperta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of
Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result
in termination of your Expert TA Account.

The magnetic field in the center of the square is directed towards:

Problem 11: A very long, straight, and solid cylindrical conductor with a radius $a=4.87 \mathrm{~cm}$ carries a current $I=56.8$ A uniformly distributed through its interior. richard.sonnenfeld@nmt.edu

@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Part (a) Which of the following best describes the functional relationship between the magnetic field strength, B, and the radial distance, r, for distances less than the radius of the cylindrical conductor, a ?

MultipleChoice :

1)

$$
B \propto \frac{1}{r^{3}}
$$

2)

$$
B \propto \frac{1}{r}
$$

3)

$$
B \propto r
$$

4)

$$
B \propto r^{3}
$$

5)

$$
B \propto r^{2}
$$

6)

$$
B \propto \frac{1}{r^{2}}
$$

Part (b) Which of the following best describes the functional relationship between the magnetic field strength, B, and the radial distance, r, for distances greater than the radius of the cylindrical conductor, a ?
MultipleChoice :
1)

$$
B \propto \frac{1}{r^{3}}
$$

$$
B \propto r
$$

3)

$$
B \propto \frac{1}{r}
$$

4)

$$
B \propto \frac{1}{r^{2}}
$$

5)

$$
B \propto r^{2}
$$

6)

$$
B \propto r^{3}
$$

Part (c) Determine the magnitude of the magnetic field in, microtesla, at a point located a distance 1.709 cm from the center of the cylinder. Numeric : A numeric value is expected and not an expression. $B(1.709 \mathrm{~cm})=$ \qquad $\mu \mathrm{T}$

Problem 12: The magnetic dipole moment of the iron atom is about $2.1 \times 10^{-23} \mathrm{~A} \cdot \mathrm{~m}^{2}$. richard.sonnenfeld@nmt.edu
@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Part (a) Calculate the maximum magnetic dipole moment of a domain consisting of 7.39×10^{19} iron atoms.
Numeric : A numeric value is expected and not an expression.
$\mu_{\text {max }}=$ \qquad $A \cdot m^{2}$

Part (b) What current, in amperes, flowing through a single circular loop of wire of diameter 2.37 cm would produce the magnetic dipole moment that was the answer to step (a)?
Numeric : A numeric value is expected and not an expression.
$I=$ \qquad A

Problem 13: Consider a long, closely wound solenoid with 10,000 turns per meter.
richard.sonnenfeld@nmt.edu
I
@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

What current, in amperes, is needed in the solenoid to produce a magnetic field inside the solenoid, near its center, that is 10^{4} times the Earth's magnetic field of $4.8 \times 10^{-5} \mathrm{~T}$?
Numeric : A numeric value is expected and not an expression.
$I=$ \qquad

Problem 14: A solenoid is producing a magnetic field of $B=4.5 \times 10^{-3} \mathrm{~T}$. It has $N=1100$ turns uniformly over a length of $d=0.25$ m.

Randomized Variables
$B=4.5 \times 10^{-3} \mathrm{~T}$
$N=1100$ turns
$d=0.25 \mathrm{~m}$
richard.sonnenfeld@nmt.edu
@ theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48245. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Part (a) Express the current I in terms of B, N and d.
Expression :
$I=$ \qquad
Select from the variables below to write your expression. Note that all variables may not be required.
$\boldsymbol{\alpha}, \boldsymbol{\gamma}, \boldsymbol{\mu}_{\mathbf{0}}, \boldsymbol{\theta}, \mathbf{B}, \mathbf{d}, \mathbf{g}, \mathbf{h}, \mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{m}, \mathbf{N}, \mathbf{P}, \mathbf{t}$

Part (b) Calculate the numerical value of I in amps.
Numeric : A numeric value is expected and not an expression.
$I=$ \qquad

Problem 15: Consider the loop and coils depicted in the figure.
richard.sonnenfeld@nmt.edu

-4

(
(
(

[^1]＠theexpertta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accordance with Expert TA＇s Terms of Service．copying this information to any solutions
sharing website is strictly forbidden．Doing so may result in termination of your Expert TA Account．
Part（a）Magnetic field in the center of this loop is directed：
MultipleChoice ：
＠theexpertta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accord
sharing website is strictly forbidden．Doing so may result in termination of
Part（a）Magnetic field in the center of this loop is directed：
MultipleChoice ：
＠theexpertta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accord
sharing website is strictly forbidden．Doing so may result in termination
Part（a）Magnetic field in the center of this loop is directed：
MultipleChoice ：

Part（b）The magnetic field outside（say，to the right）of this loop is directed：

Problem 18：The magnetic field of a proton is approximately like that of a circular current loop $0.650 \times 10^{-15} \mathrm{~m}$ in radius carrying
Problem 18：The magnetic field of a proton is approximately like that of a
$1.05 \times 10^{4} \mathrm{~A}$ ．An MRI machine needs to be able to manipulate these fields．
richard．sonnenfeld＠nmt．edu
5）Down
Part（b）The magnetic field outside（say，to the right）of this loop is directed
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic field of a proton is approximately like that of a
1．05 $\times 10^{4}$ A．An MRI machine needs to be able to manipulate these fields．
richard．sonnenfeld＠nmtedu
Part（b）What is the field at the center of a proton？Notice how it compares
Numeric ：A numeric value is expected and not an expression．
$\boldsymbol{B}=$
＠theexpertta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accordance with Expert
sharing website is strictly forbidden．Doing so may result in termination of your Expert TA
Part（a）To see why an MRI utilizes iron to increase the magnetic field create
coil 0.660 m in radius to create a 1.20 T field（typical of an MRI instrument）
Numeric ：A numeric value is expected and not an expression．
$\boldsymbol{I}=$
a
＠theexperta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accordance with Expert TA＇s Terms of Service．copying this information to any solutions
sharing website is strictly forbidden．Doing so may result in termination of your Expert TA Account．
Part（a）To see why an MRI utilizes iron to increase the magnetic field created by a coil，calculate the current needed in a 400 loop
＠theexperta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accordance with Expert TA＇s Terms of Service．copying this information to any solutions
sharing website is strictly forbidden．Doing so may result in termination of your Expert TA Account．
Part（a）To see why an MRI utilizes iron to increase the magnetic field created by a coil，calculate the current needed in a 400 loo
Part（a）To see why an MRI utilizes iron to increase the magnetic field created by a coil，calculate the current needed in a 400 loop－per－meter circular

Numeric ：A numeric value is expected and not an expression．
 \qquad

Part（b）What is the field at the center of a proton？Notice how it
Numeric ：A numeric value is expected and not an expression．
$\boldsymbol{B}=$
 \qquad
\qquad
\qquad

$$
2
$$

路
lance with Expert TA＇s Terms of Service．copying this information to any solutions
of your Expert TA Account．

Abstract

```Part（b）What is the field at the center of a proton？Notice how it compares to the field we used in the previous calculation．``` －

Mission．



2）To the right part of loop
3）Zero．
4）To the left part of loop
5）Down
Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mactich
richard．sonnenfeld＠nmt．edu
Bart（b）What is the field at
B＝
Numeric ：A numeric value
Part（a）To see why an MR
coil 0.660 m in radius to acre
Numeric ：A numeric value
I

3）Zero．

$$
=
$$

$$
-
$$



Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mac
richard．sonnenfeld＠nmt．edu
Bart（b）What is the field at
B $=$
Numeric ：A numeric value
I $=\begin{aligned} & \text {＠theexperta．com－tracking id：} \\ & \text { sharing website is strictly forbids } \\ & \text { Part（a）To see why an MR } \\ & \text { coil } 0.660 \mathrm{~m} \text { in radius to cr } \\ & \text { Numeric }: \text { A numeric value } \\ & \text { II }\end{aligned}$
Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mac
richard．sonnenfeld＠nmt．edu
Bart（b）What is the field at
B $=$
Numeric ：A numeric value
I $=\begin{aligned} & \text {＠theexperta．com－tracking id：} \\ & \text { sharing website is strictly forbids } \\ & \text { Part（a）To see why an MR } \\ & \text { coil } 0.660 \mathrm{~m} \text { in radius to cr } \\ & \text { Numeric }: \text { A numeric value } \\ & \text { II }\end{aligned}$
Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mac
richard．sonnenfeld＠nmt．edu
Bart（b）What is the field at
B $=$
Numeric ：A numeric value
I $=\begin{aligned} & \text {＠theexperta．com－tracking id：} \\ & \text { sharing website is strictly forbids } \\ & \text { Part（a）To see why an MR } \\ & \text { coil } 0.660 \mathrm{~m} \text { in radius to cr } \\ & \text { Numeric }: \text { A numeric value } \\ & \text { II }\end{aligned}$
Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mac
richard．sonnenfeld＠nmt．edu
Bart（b）What is the field at
B $=$
Numeric ：A numeric value
I $=\begin{aligned} & \text {＠theexperta．com－tracking id：} \\ & \text { sharing website is strictly forbids } \\ & \text { Part（a）To see why an MR } \\ & \text { coil } 0.660 \mathrm{~m} \text { in radius to cr } \\ & \text { Numeric }: \text { A numeric value } \\ & \text { II }\end{aligned}$

5）Down
Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mach
richard．sonnenfeld＠nmt．edu
Part（b）What is the field at the
Numeric ：A numeric value
$\boldsymbol{B}=$
＠theexperta．com－tracking id： 3 N

2）To the right part of loop
3）Zero．
4）To the left part of loop
5）Down
Part（b）The magnetic field
MultipleChoice ：
1）Down
2）Up
3）Away from the loop
4）Is zero
5）Towards the loop
Problem 18：The magnetic
1．05 $\times 10^{4}$ A．An MRI mac
richard．sonnenfeld＠nmt．edu
Part（b）What is the field at
Numeric ：A numeric value
B＝
＠theexpertta．com－tracking id：

[^2]$\square$



## （

$\square$ $\qquad$

tic field outside（say，to th
－（say，to the right）of this
$\square$


#### Abstract




－
ए ex
五

＿


？
$\square$

MultipleChoice ：

L＋

$\square$

$$
\operatorname{lel}^{2}
$$


[^0]:    Account．

[^1]:    ＠theexpertta．com－tracking id：3N77－8D－07－4A－9D40－48245．In accordance with Expert TA＇s Terms of Service．copying this information to any solutions
    sharing website is strictly forbidden．Doing so may result in termination of your Expert TA Account．

[^2]:    | Part（b）The magnetic field |
    | :--- |
    | MultipleChoice ： |
    | 1）Down |
    | 2）Up |
    | 3）Away from the loop |
    | 4）Is zero |
    | 5）Towards the loop |
    | Problem 18：The magnetic |
    | 1．05 $\times 10^{4}$ A．An MRI mac |
    | richard．sonnenfeld＠nmt．edu |
    | Part（b）What is the field at |
    | Numeric ：A numeric value |
    | $\boldsymbol{B}=$ |
    | ＠theexpertta．com－tracking id： |
    | sharing website is strictly forbid |
    | Part（a）To see why an MR |
    | coil 0.660 m in radius to re |
    | Numeric ：A numeric value |
    | $\boldsymbol{I}=$ |


    | Part（b）The magnetic field |
    | :--- |
    | MultipleChoice ： |
    | 1）Down |
    | 2）Up |
    | 3）Away from the loop |
    | 4）Is zero |
    | 5）Towards the loop |
    | Problem 18：The magnetic |
    | 1．05 $\times 10^{4}$ A．An MRI mac |
    | richard．sonnenfeld＠nmt．edu |
    | Part（b）What is the field at |
    | Numeric ：A numeric value |
    | $\boldsymbol{B}=$ |
    | ＠theexpertta．com－tracking id： |
    | sharing website is strictly forbid |
    | Part（a）To see why an MR |
    | coil 0.660 m in radius to re |
    | Numeric ：A numeric value |
    | $\boldsymbol{I}=$ |


    | Part（b）The magnetic field |
    | :--- |
    | MultipleChoice ： |
    | 1）Down |
    | 2）Up |
    | 3）Away from the loop |
    | 4）Is zero |
    | 5）Towards the loop |
    | Problem 18：The magnetic |
    | 1．05 $\times 10^{4}$ A．An MRI mac |
    | richard．sonnenfeld＠nmt．edu |
    | Part（b）What is the field at |
    | Numeric ：A numeric value |
    | $\boldsymbol{B}=$ |
    | ＠theexpertta．com－tracking id： |
    | sharing website is strictly forbid |
    | Part（a）To see why an MR |
    | coil 0.660 m in radius to re |
    | Numeric ：A numeric value |
    | $\boldsymbol{I}=$ |


    | Part（b）The magnetic field |
    | :--- |
    | MultipleChoice ： |
    | 1）Down |
    | 2）Up |
    | 3）Away from the loop |
    | 4）Is zero |
    | 5）Towards the loop |
    | Problem 18：The magnetic |
    | 1．05 $\times 10^{4}$ A．An MRI mac |
    | richard．sonnenfeld＠nmt．edu |
    | Part（b）What is the field at |
    | Numeric ：A numeric value |
    | $\boldsymbol{B}=$ |
    | ＠theexpertta．com－tracking id： |
    | sharing website is strictly forbid |
    | Part（a）To see why an MR |
    | coil 0.660 m in radius to re |
    | Numeric ：A numeric value |
    | $\boldsymbol{I}=$ |


    | 5）Down |
    | :--- |
    | Part（b）The magnetic field |
    | MultipleChoice ： |
    | 1）Down |
    | 2）Up |
    | 3）Away from the loop |
    | 4）Is zero |
    | 5）Towards the loop |
    | Problem 18：The magnetic |
    | 1．05 $\times 10^{4} \mathrm{~A}$ ．An MRI mac |
    | richard．sonnenfeld＠nmt．edu |
    | Part（b）What is the field at |
    | Numeric ：A numeric value |
    | $\boldsymbol{B}=$ |
    | ＠theexpertta．com－tracking id： |
    | sharing website is strictly forbid |
    | Part（a）To see why an MR |
    | coil 0.660 m in radius to re |
    | Numeric ：A numeric value |
    | $\boldsymbol{I}=$ |


    | Part（b）The magnetic field |
    | :--- |
    | MultipleChoice ： |
    | 1）Down |
    | 2）Up |
    | 3）Away from the loop |
    | 4）Is zero |
    | 5）Towards the loop |
    | Problem 18：The magnetic |
    | 1．05 $\times 10^{4}$ A．An MRI mac |
    | richard．sonnenfeld＠nmt．edu |
    | Part（b）What is the field at |
    | Numeric ：A numeric value |
    | $\boldsymbol{B}=$ |
    | ＠theexpertta．com－tracking id： |
    | sharing website is strictly forbid |
    | Part（a）To see why an MR |
    | coil 0.660 m in radius to re |
    | Numeric ：A numeric value |
    | $\boldsymbol{I}=$ |

    
    MultipleChoice :

