- Announcements
 Review Session In class Tuesday
 5 pm at Library on April 30
- Last Time
 Faraday's Law Induced voltage
- Today
 - Faraday's Law/Lenz's Law
 - Generators
 - Light!

Faraday's Law

$$\varepsilon = -\frac{d}{dt} \vec{B} \cdot \vec{A}$$
 The form of Faraday's law we will use

Three ways to get an induced EMF ...

$$\varepsilon = -\vec{A} \cdot \frac{d\vec{B}}{dt}$$
 Constant loop area but a changing B-field.

$$\varepsilon = -\vec{B} \cdot \frac{d\vec{A}}{dt}$$
 Constant B but a changing loop area.

$$\varepsilon = -\frac{d}{dt} \vec{B} \cdot \vec{A}$$
 Area & B constant but their dot product changes.

Two ways to use the hitch-hikers rule.

Remember magnetic moments?

$$\vec{m} = I \vec{A}$$

If current flows clockwise, which way does the magne

- (A) Counter clockwise
- **(B)** Right
- **(C)** Out of Page
- (D) Into Page
- (E) Down

Loop acts like a bar magnet with N pole to left.

Right-hand rule: Fingers in direction of current point thumb in direction of N pole.

(b)

A circular loop of wire is in a region of spatially uniform magnetic field.

The magnetic field increases from from zero to 3 Tesla in one millisecond.

Induced EMF Magnitude is?

(B)
$$\pi/3 V$$

(C)
$$3 \times 10^{-2} \pi V$$

(D)
$$3\pi V$$

(E)
$$3 \times 10^{1} \, \text{m V}$$

$$\varepsilon = -\vec{A} \cdot \frac{d\vec{B}}{dt}$$

Faraday's Law

Changing magnetic fluxes produce electric fields and hence voltages.

$$\Phi_{B} = \vec{B} \cdot \vec{A} \qquad \epsilon = \frac{-d\Phi_{B}}{dt}$$

Lenz's Law (the minus sign in Faraday's law)

Changing fluxes produce currents which would oppose the changing flux or create a moment that opposes flux.

Using Lenz's Law

Figure out how the flux is changing.

Figure out what current what produce that change in flux.

The induced current is opposite to that.

A circular loop of wire is in a region of spatially uniform magnetic field. The magnetic field is directed into the plane of the figure.

If the magnetic field magnitude is *increasing*,

- A. the induced emf is clockwise
- B. the induced emf is counterclockwise
- C. the induced emf is zero
- D. answer depends on the rate of change of the field

Clicker

The magnetic field is confined to the region inside the dashed lines; it is zero outside. The metal loop has length L and width w and is being pulled out of

the magnetic field. Which is true?

A. There is a clockwise induced current in the loop.

- B. There is a counterclockwise induced current in the loop.
- C. There is no induced current in the loop.

Problem 7: A single-turn rectangular wire loop has a resistance equal to 1.4 \$1 and the dimensions shown in the drawing. The magnetic field at all points inside the loop varies according to $B = B_0 e^{-\alpha t}$, where $B_0 = 0.25$ T and $\alpha = 200 \; \mathrm{s}^{-1}$.

5.0 cm -

@theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-48248. In accordance with Expert TA's Terms of Service, copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Part (a) What is the magnitude, in amperes, of the current induced in the loop at t = 1.0 ms? **Numeric**: A numeric value is expected and not an expression.

$$I_1 =$$
 _____A

Part (b) What is the magnitude, in amperes, of the current induced in the loop at t = 20.0 ms? **Numeric**: A numeric value is expected and not an expression.

$$I_2$$
 = ______A

A solenoid has radius "r" and is surrounded by a hoop of radius "R". The magnetic field inside the solenoid itself is "B"

• What is the flux through the large hoop in the two cases shown.

[A]
$$\Phi_1 = \pi r^2 B$$
, $\Phi_2 = \pi r^2 B \cos(60)$

[B]
$$\Phi_1 = \pi R^2 B$$
, $\Phi_2 = \pi R^2 B \cos(60)$

[C]
$$\Phi_1 = \pi r^2 B$$
, $\Phi_2 = \pi r^2 B \cos(30)$

[D]
$$\Phi_1 = \pi R^2 B$$
, $\Phi_2 = \pi R^2 B \cos(30)$

[E]
$$\Phi_1 = \pi r^2 B$$
, $\Phi_2 = \pi r^2 B$

Clicker

The current in the straight wire is decreasing. Which is true?

- A. There is a clockwise induced current in the loop.
- B. There is a counterclockwise induced current in the loop.
- C. There is no induced current in the loop.

The rectangular loop of wire is being moved to the right at constant velocity. A constant current *I* flows in the long wire in the direction shown.

Which of the following statements about the current induced in the loop is *correct?*

- A. the induced current is CW and proportional to I
- B. the induced current is CCW and proportional to I
- C. the induced current is CW and proportional to I^2
- D. the induced current is CCW and proportional to I^2
- E. there is no induced current

Clicker

The current in the straight wire is constant. The loop is moving to the right at constant speed. Which is true?

- A. There is a clockwise induced current in the loop.
- B. There is a counterclockwise induced current in the loop.
- C. There is no induced current in the loop.

RECAP

http://tinyurl.com/can-crusher-slomo

Can crusher!

http://tinyurl.com/can-crusher-necking

Shorter vid. – necking

Counterclockwise

Bz and dBz/dt

Clockwise

B induced

F induced

Can crusher!

http://tinyurl.com/can-crusher-necking

Shorter vid. – necking

F induced is radially inward

Can stretcher!

http://tinyurl.com/can-crusher-slomo

Shorter vid. – necking

F induced stretches the Can vertically

An electric generator works by Faraday's law + Trig!

$$\Phi_{B} = \vec{B} \cdot \vec{A}$$

$$\vec{B} = B_{0} \hat{i}$$

$$\vec{A} = A_{0} \cos \theta \hat{i} + A_{0} \sin \theta \hat{j}$$

$$\vec{B} \cdot \vec{A} = B_{0} A_{0} \cos \theta$$

$$\vec{B} \cdot \vec{A} (t) = B_{0} A_{0} \cos \omega t$$

An electric generator

What's
$$\frac{1}{\sqrt{\mu_0 \epsilon_0}}$$
?

Maxwell Correction to Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}$$
 Ampere's Law

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{I}} = \mu_0 \mathbf{I}_{\text{enclosed}} + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$$

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$v = f \lambda$$

$$c = f \lambda$$

$$\omega = 2\pi f$$

$$v = c = \frac{\omega}{k}$$

$$E = E_0 \sin(kx - \omega t)$$

And Yahweh said ...

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} \qquad \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\frac{d\Phi_B}{dt}$$

And Yahweh said ...

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{l}} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} \qquad \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{l}} = -\frac{d\Phi_B}{dt}$$

... and there was light