## Lecture 22:

## 04/09/2024

- Announcements

Grade Change day is April 10 (tomorrow)
Exams back today
Updated grades.
It is unlikely that your final grade will increase by more than a letter.

- Last Time

Magnetism
Motors

- Today

Motors
Ampere's Law
Faraday's Law

## Electromagnets

- A loop of wire is a basic electromagnet
- Many loops of wire (a coil or "solenoid") is a better electromagnet.



## "Homopolar" Motor


https://www.youtube.com/watch?v=bH7DFPlayNg


## Motors

Are just clever loops of wire in magnetic fields

$\overrightarrow{\mathrm{F}}=\mathrm{I} \overrightarrow{\mathrm{L}} \times \overrightarrow{\mathrm{B}} \quad$ Force on current I

## Wire loop

Is free to rotate about vertical axis (dotted line)


Can we calculate net force and torque?
$\overrightarrow{\mathrm{F}}=\mathrm{I} \overrightarrow{\mathrm{L}} \times \overrightarrow{\mathrm{B}} \quad$ Force on current I

## Try B-field out of page


$\overrightarrow{\mathrm{F}}=\mathrm{I} \overrightarrow{\mathrm{L}} \times \overrightarrow{\mathrm{B}} \quad$ Force on current I

Try B-field out of page


## Try B-field to the right


$\overrightarrow{\mathrm{F}}=\mathrm{I} \overrightarrow{\mathrm{L}} \times \overrightarrow{\mathrm{B}} \quad$ Force on current I

## Equations for motors

$\vec{F}=I \vec{L} \times \vec{B} \quad$ Force on current I
$\vec{\tau}=\vec{r} \times \vec{F} \quad$ Torque definition
$\vec{m}=N$ I $\vec{A} \quad$ Def. of Magnetic Moment
$\vec{\tau}=\overrightarrow{\mathrm{m}} \times \overrightarrow{\mathrm{B}} \quad$ Torque on a Magnetic Moment

## Torque

- A wrench is 30 cm long and a person exerts 10 N at right angles to it. The torque is?
(A) $30 \mathrm{~N} \cdot \mathrm{~m}$
(B) $10 \mathrm{~N} \cdot \mathrm{~m}$
(C) $300 \mathrm{~N} \cdot \mathrm{~m}$
(D) $3 \mathrm{~N} \cdot \mathrm{~m}$
(E) $0 \mathrm{~N} \cdot \mathrm{~m}$


## "Give me a moment"

"Moment" is an old physics/engineering word that has
NOTHING TO DO with momentum. It is a general way of referring to quantities multiplied by lengths or area.

Thus "Moment of Inertia"
Or "Moment arm"
Or "Magnetic Moment"

## Using magnetic moment makes it much easier to calculate motor torques.

## What is the magnetic moment of this loop?

## $\mathrm{L}=6 \mathrm{~m}$

$\mathrm{w}=2 \mathrm{~m}$
$\mathrm{I}=3$ Amps
(A) $\overrightarrow{\mathrm{m}}=3 \hat{\mathrm{x}}$ Ampere $\cdot$ meter $^{2}$
(B) $\overrightarrow{\mathrm{m}}=3 \hat{\mathrm{z}}$ Ampere $\cdot$ meter $^{2}$
(C) $\overrightarrow{\mathrm{m}}=36 \hat{\mathrm{z}}$ Ampere $\cdot$ meter $^{2}$
(D) $\overrightarrow{\mathrm{m}}=3 \hat{\mathrm{y}}$ Ampere $\cdot$ meter $^{2}$



# This is a side view of a wire loop. Which direction should B point for maximum torque? 

## n

(A) To the right
(B) Up
(C) Along $\hat{n}$
(D) Perpendicular to $\hat{n}$

# This is a side view of a wire loop. Which direction should B point for zero torque? 

n
(A) To the right
(B) Up
(C) Along $\hat{n}$
(D) Perpendicular to $\hat{n}$


## Equations of Magnetism

$\vec{F}=\mathrm{Q} \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{B}} \quad$ Force on charge Q
$\overrightarrow{\mathrm{F}}=\mathrm{I} \overrightarrow{\mathrm{L}} \times \overrightarrow{\mathrm{B}} \quad$ Force on current I
$\overrightarrow{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}} \hat{\phi} \quad$ Field of Infinite wire
$\vec{B}=\frac{\mu_{0} \mathrm{I}}{2 \mathrm{a}} \hat{\mathrm{z}} \quad$ Field in center of wire loop
$\vec{B}=\mu_{0} n I \hat{z} \quad$ Field of an infinite coil (solenoid)

## Maxwell's Equations

$\int \vec{E} \cdot d \vec{A}=\frac{Q}{\epsilon_{0}} \quad$ To calculate $E$ for symettrical charges.
$\int \vec{B} \cdot d \vec{A}=0 \quad$ Cannot have North magnet w/o a South pole.
$\int \vec{B} \cdot d \vec{l}=\mu_{0} I \quad$ To calculate $B$ for symettrical currents.
$\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{l}}=-\frac{\mathrm{d} \Phi}{\mathrm{dt}} \quad$ Magnetic induction! Generators! Light!

## A solenoid is like a bar magnet



## Faraday's Law

A changing magnetic flux makes a voltage. Moving a magnet in a loop of wire makes a voltage.
Spinning a wire in a magnetic field makes a Voltage
Turning on an electromagnet near a coil of wire makes a voltage.

## Faraday's Law Lab

You will yank a loop of wire out of a magnetic field. This will allow you to measure the magnetic field.

You will run an AC current through a coil. This will cause a voltage to appear in a different coil.

# Electric fields are calculated with Coulomb's law or Gauss's Law 

Magnetic Fields are calculated with the Biot-Savart Law or Ampere's Law
$\mathrm{d} \overrightarrow{\mathrm{B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} \overrightarrow{\mathrm{l}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}} \quad$ Biot Savart

## Recap Lecture 22

- Magnetic forces are at right angles to velocity and field
- Superposition works for magnetic fields just like electric fields
- Motors are clever combos of wire and B
- Solenoids are "simple" ... they have uniform B-fields inside.
- Charged particles go in circles in magnetic fields
- Torque is cross product of magnetic moment and B
- Ampere's Law and Biot Savart law are used to calculate magnetic fields

