Lecture 08:

02/08/2024

- Announcements

About the recitation problems

- Last Time

Electric field lines
Flux
Gauss's law

- Today

Gauss's law
Field of symmetrical charge configurations

Key Equations

Coulomb's law

$$
\overrightarrow{\mathbf{F}}_{12}(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}^{2}} \widehat{\mathbf{r}}_{12}
$$

Superposition of electric forces

$$
\overrightarrow{\mathbf{F}}(r)=\frac{1}{4 \pi \varepsilon_{0}} Q \sum_{i=1}^{N} \frac{q_{i}}{r_{i}^{2}} \widehat{\mathbf{r}}_{i}
$$

Electric force due to an electric field
$\overrightarrow{\mathbf{F}}=Q \overrightarrow{\mathbf{E}}$

Electric field at point P

Field of an infinite wire

$$
\overrightarrow{\mathbf{E}}(P) \equiv \frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{r_{i}^{2}} \widehat{\mathbf{r}}_{i}
$$

Field of an infinite plane

$$
\overrightarrow{\mathbf{E}}(z)=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda}{z} \widehat{\mathbf{k}}
$$

$\overrightarrow{\mathbf{E}}=\frac{\sigma}{2 \varepsilon_{0}} \widehat{\mathbf{k}}$

Dipole moment

Key Equations

Definition of electric flux, for uniform electric field

Electric flux through an open surface

Electric flux through a closed surface

Gauss's law

Gauss's Law for systems with symmetry

The magnitude of the electric field just outside the surface of a conductor

$$
\begin{aligned}
& \Phi=\overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{A}} \rightarrow E A \cos \theta \\
& \Phi=\int_{S} \overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}} d A=\int_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
& \Phi=\oint_{S} \overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}} d A=\oint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
& \Phi=\oint_{S} \overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}} d A=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}} \\
& \Phi=\oint_{S} \overrightarrow{\mathbf{E}} \cdot \hat{\mathbf{n}} d A=E \oint_{S} d A=E A=\frac{q_{\mathrm{enc}}}{\varepsilon_{0}}
\end{aligned}
$$

$$
E=\frac{\sigma}{\varepsilon_{0}}
$$

Gauss's law

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

$$
\Phi_{\text {total }}=\int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\epsilon_{0}}
$$

icphysweb_field_line_simulator

https://icphysweb.z13.web.core.windows.net/simulation.html

academo_field_line_sim

https://academo.org/demos/electric-field-line-simulator/

electric_field_hockey

https://phet.colorado.edu/sims/cheerpj/electric-hockey/latest/electric-hockey.html? simulation=electric-hockey

Gauss's law

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

$$
\Phi_{\text {total }}=\int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\epsilon_{0}}
$$

Gauss's law for simple cases

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".
$E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Gauss's law is a generalization of Coulomb's law

Gauss's law is a generalization of Coulomb's law

$$
\Phi_{\text {total }}=\int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\epsilon_{0}}
$$

$E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Gaussian logic trick

No charge inside No net flux

Gauss's law is a generalization of Coulomb's law

The outer sphere has

4 times the surface area . . .

$$
\int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\epsilon}
$$

Gauss's law is a generalization of Coulomb's law

The outer sphere has

4 times the surface area $\ldots \int \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$
ϵ_{0}

$4 \pi r^{2} E=\underline{q_{\text {enclosed }}}$
 ϵ_{0}
 $$
E=\frac{q_{\text {enclosed }}}{4 \pi \epsilon_{0}} \frac{1}{r^{2}}
$$

is the same.

$$
\mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{2}}
$$

Simple Case I: Long (infinite) Wire

$E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Simple Case I: Long (infinite) Wire

Simple Case I: Long (infinite) Wire

$$
\begin{aligned}
E \times(\text { Surface Area })=\frac{q_{\text {enclosed }}}{\epsilon_{0}} \quad \lambda=\frac{Q}{L} \quad \sigma & =\frac{Q}{A} \\
\rho & =\frac{Q}{V_{0} \text { lome }}
\end{aligned}
$$

Simple Case I: Long (infinite) Wire

$$
\begin{aligned}
& E \times(\text { Surface Area })=L \xrightarrow{\frac{q_{\text {enclosed }}}{\epsilon_{0}}} S A=2 \pi r l+2 \pi r^{2} \\
& E 2 \pi r l=\frac{q_{\text {enc }}}{E_{0}} \\
& F 2 \pi r l=\frac{\lambda l}{e} \\
& E=\frac{\lambda}{2 \pi r \epsilon_{0}}
\end{aligned}
$$

Long Wire I

A wire is 10 meters long and you are 10 cm away from its middle. The electric field magnitude is $16 \mathrm{~N} / \overline{\mathrm{C}}$. What is the approximate electric field if you move 20 cm away? a

(A) $4 \mathrm{~N} / \mathrm{C}$
(B) $8 \mathrm{~N} / \mathrm{C}$
(C) $12 \mathrm{~N} / \mathrm{C}$
(D) $16 \mathrm{~N} / \mathrm{C}$
(E) $32 \mathrm{~N} / \mathrm{C}$

Long Wire II

A wire is 10 meters long and you are 100 m away from its middle. The electric field magnitude is $16 \mathrm{~N} / \mathrm{C}$. What is the approximate electric field if you move 200 m away?

Simple Case II: Large (infinite) Plane

$E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Relation between symmetry and Electric Field

Imagine an infinite plane of charge.

Relation between symmetry and Electric Field

Because you can't tell what direction you are facing, the field must be ONLY Perpendicular to the plane.

How large is this area?

[A] Floor tiles ($4^{\prime} \times 6^{\prime}$)
[B] Painting (12 "x 18 ")
[C] Warehouse (60 'x90') [D] Airfield (1000 'x1500'
[E] Not enough
Info, can't tell

Electric field of a plane of charge

Because you ALSO can't tell how far away you are from the plane, the field cannot change magnitude. It must be constant.
$0 \int_{-\infty}^{0} \frac{1}{\left(x^{2}+s^{2}+y y^{2}\right.} d x d y$

Electric field of a plane of charge

$E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Electric field of a plane of charge

 $E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$$$
\begin{aligned}
& E=\frac{Q}{2 \epsilon_{0}} \\
& \sigma=\frac{Q}{A}
\end{aligned}
$$

Infinite Plane I

A square plate is 10 meters on a side and you are 10 cm away from its middle. The electric field magnitude is $16 \mathrm{~N} / \mathrm{C}$. What is the approximate electric field if you move 20 cm away?
(A) $4 \mathrm{~N} / \mathrm{C}$
$F=\frac{\sigma}{2 t_{0}} k$
(B) $8 \mathrm{~N} / \mathrm{C}$
(C) $12 \mathrm{~N} / \mathrm{C}$
(D) $16 \mathrm{~N} / \mathrm{C}$
(E) $32 \mathrm{~N} / \mathrm{C}$

Infinite Plane II

A square plate is 10 meters on a side and you are 100 m away from its middle. The electric field magnitude is $16 \mathrm{~N} / \mathrm{C}$. What is the approximate electric field if you move 200 m away?
(A) $4 \mathrm{~N} / \mathrm{C}$
(B) $8 \mathrm{~N} / \mathrm{C}$
(C) $12 \mathrm{~N} / \mathrm{C}$
(D) $16 \mathrm{~N} / \mathrm{C}$
(E) $32 \mathrm{~N} / \mathrm{C}$

Infinite Plane III

A square plate is 10 meters on a side and has a total charge of 8.85 mC . You are 1 cm away from its middle. What is the electric field magnitude?

$$
\begin{array}{ll}
\text { (A) } & 8.85 \times 10^{-5} \mathrm{~N} / \mathrm{C} \\
\text { (B) } & 4.43 \times 10^{-5} \mathrm{~N} / \mathrm{C} \\
\text { (C) } & 5.00 \times 10^{6} \mathrm{~N} / \mathrm{C} \\
\text { (D) } & 1.00 \times 10^{7} \mathrm{~N} / \mathrm{C} \\
\text { (E) } & 1.00 \times 10^{8} \mathrm{~N} / \mathrm{C}
\end{array}
$$

Infinite Plane III

A square plate is 10 meters on a side and has a total charge of 8.85 mC . You are 1 cm away from its middle. What is the electric field magnitude?

$\overrightarrow{\mathrm{E}}=\frac{\sigma}{2} \hat{\mathrm{k}}$
 $2 \epsilon_{0}$

Planar symmetry

$+++++++++++++$

Infinite parallel-plate capacitor
$\overrightarrow{\mathrm{E}}=\frac{\lambda}{2 \pi r \epsilon_{0}} \hat{r}$
Cylindrical symmetry

Coaxial cylinders
$\vec{E}=\frac{Q}{4 \pi r^{2} \epsilon_{0}} \hat{r}$
Spherical symmetry

toward or away from the center.

Concentric spheres

Relation between symmetry and Electric Field

If you can't tell where you are with respect to a charge distribution

Then the electric field direction cannot give you a hint.

Relation between symmetry and Electric Field

Relation between symmetry and Electric Field

(a) Is this a possible electric field of an infinitely long charged cylinder? Suppose the charge and the field are reflected in a plane perpendicular to the axis.

Relation between symmetry and Electric Field

(b) The charge distribution is not changed by the reflection, but the field is. This field doesn't match the symmetry of the cylinder, so the cylinder's field can't look like this.

© 2013 Pearson Education, Inc.

Relation between symmetry and Electric Field

(a)
 is not changed by reflecting it in a plane \vec{E} containing the axis.

Relation between symmetry and Electric Field

(b)

[^0]
Relation between symmetry and Electric Field

The ONLY field consistent with symmetry of an infinitely long cylinder points radially outward.

What about a hollow sphere?

$\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\epsilon_{0}}$
$E \times($ Surface Area $)=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

What about a hollow sphere of charge?

What about a hollow sphere?

What about a solid sphere of charge?

What about a solid sphere of charge?

What about a solid sphere of charge?

\longleftarrow Inside charge $\longrightarrow \longleftarrow$ Outside charge distribution distribution

Electric Field Superposition

Given four identical charges at corners of a square, find direction of field in the center of the square, and in the middle of each side.

Gauss's law

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

$$
\int \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {enclosed }}}{\epsilon_{0}}
$$

WTF?

Next Class:

Electric potential ... What's a volt anyway?

[^0]: © 2013 Pearson Education, Inc.

