Lecture 08:

- Announcements About the recitation problems
- Last Time Electric field lines Flux Gauss's law
- Today

Gauss's law Field of symmetrical charge configurations

Key Equations

Coulomb's law

$$\vec{\mathbf{F}}_{12}(r) = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}^2} \hat{\mathbf{r}}_{12}$$

Superposition of electric forces

$$\vec{\mathbf{F}}(r) = \frac{1}{4\pi\epsilon_0} Q \sum_{i=1}^N \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i$$

Electric force due to an electric field \vec{F}

Electric field at point P

$$\vec{\mathbf{F}} = Q\vec{\mathbf{E}}$$

$$\vec{\mathbf{E}}(P) \equiv \frac{1}{4\pi\epsilon_0} \sum_{i=1}^N \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i$$

Field of an infinite wire

$$\vec{\mathbf{E}}(z) = \frac{1}{4\pi\varepsilon_0} \frac{2\lambda}{z} \hat{\mathbf{k}}$$

Field of an infinite plane

$$\vec{\mathbf{E}} = \frac{\sigma}{2\varepsilon_0} \hat{\mathbf{k}}$$

Dipole moment

$$\overrightarrow{\mathbf{P}} = \overrightarrow{\mathbf{Q}}$$

Key Equations

Definition of electric flux, for uniform electric field

Electric flux through an open surface

Electric flux through a closed surface

Gauss's law

Gauss's Law for systems with symmetry

The magnitude of the electric field just outside the surface of a conductor

$$\Phi = \vec{\mathbf{E}} \cdot \vec{\mathbf{A}} \to EA \cos \theta$$

$$\Phi = \int_{S} \vec{\mathbf{E}} \cdot \hat{\mathbf{n}} \, dA = \int_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

$$\Phi = \oint_{S} \vec{\mathbf{E}} \cdot \hat{\mathbf{n}} \, dA = \oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

$$\Phi = \oint_{S} \vec{\mathbf{E}} \cdot \hat{\mathbf{n}} \, dA = \frac{q_{\text{enc}}}{\varepsilon_{0}}$$

$$\Phi = \oint_{S} \vec{\mathbf{E}} \cdot \hat{\mathbf{n}} \, dA = E \oint_{S} dA = EA = \frac{q_{\text{enc}}}{\varepsilon_{0}}$$

 $E = \frac{\sigma}{\varepsilon_0}$

Gauss's law

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

$$\Phi_{\text{total}} = \int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\epsilon_0}$$

icphysweb_field_line_simulator

https://icphysweb.z13.web.core.windows.net/simulation.html

academo_field_line_sim

https://academo.org/demos/electric-field-line-simulator/

electric_field_hockey

https://phet.colorado.edu/sims/cheerpj/electric-hockey/latest/electric-hockey.html? simulation=electric-hockey

Gauss's law

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

$$\Phi_{\text{total}} = \int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\epsilon_0}$$

Gauss's law for simple cases

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

 $E \times (Surface Area) = \frac{q_{enclosed}}{\epsilon_{o}}$

 $\Phi_{\text{total}} = \int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\epsilon_0}$

$$\Phi_{\text{total}} = \int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\epsilon_0}$$
$$E \times (\text{Surface Area}) = \frac{q_{\text{enclosed}}}{\epsilon_0}$$

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Long Wire I

A wire is 10 meters long and you are 10 cm away from its middle. The electric field magnitude is 16 N/C? What is the approximate electric field if you move 20 cm away? (A) 4 N/C

(A) 4 N/C
(B) 8 N/C
(C) 12 N/C
(D) 16 N/C
(E) 32 N/C

Long Wire II

A wire is 10 meters long and you are 100 m away from its middle. The electric field magnitude is 16 N/C. What is the approximate electric field if you move 200 m away? (A) 4 N/C

(A) 4 N/C
(B) 8 N/C
(C) 12 N/C
(D) 16 N/C
(E) 32 N/C

Simple Case II: Large (infinite) Plane

$$E \times (Surface Area) = \frac{q_{enclosed}}{\epsilon_0}$$

Imagine an infinite plane of charge.

Because you can't tell what direction you are facing, the field must be ONLY Perpendicular to the plane.

How large is this area?

[A] Floor tiles (4'x6')
[B] Painting (12"x18")
[C] Warehouse (60'x90')
[D] Airfield (1000'x1500')
[E] Not enough
Info, can't tell

Electric field of a plane of charge

Because you ALSO can't tell how far away you are from the plane, the field cannot change magnitude. It must be constant. S (x + s = typ) x dy Line ~ 1/r Plane cons dq = 5dA

Electric field of a plane of charge

 $E \times (Surface Area) = \frac{q_{enclosed}}{\epsilon_0}$

Infinite Plane I

A square plate is 10 meters on a side and you are 10 cm away from its middle. The electric field magnitude is 16 N/C. What is the approximate electric field if you move 20 cm away? $f = \int_{-\infty}^{\infty} k$ (A) 4 N/C (B) 8 N/C

(A) 4 N/C
(B) 8 N/C
(C) 12 N/C
(D) 16 N/C
(E) 32 N/C

Infinite Plane II

A square plate is 10 meters on a side and you are 100 m away from its middle. The electric field magnitude is 16 N/C. What is the approximate electric field if you move 200 m away?

(A) 4 N/C
(B) 8 N/C
(C) 12 N/C
(D) 16 N/C
(E) 32 N/C

Infinite Plane III

A square plate is 10 meters on a side and has a total charge of 8.85 mC. You are 1 cm away from its middle. What is the electric field magnitude?

> (A) 8.85×10^{-5} N/C (B) 4.43×10^{-5} N/C (C) 5.00×10^{6} N/C (D) 1.00×10^{7} N/C (E) 1.00×10^{8} N/C

Infinite Plane III

A square plate is 10 meters on a side and has a total charge of 8.85 mC. You are 1 cm away from its middle. What is the electric field magnitude?

Planar symmetry

Infinite

Cylindrical symmetry Infinite cylinder Cylindrical symmetry The field is radial toward or away from the axis.

Concentric spheres

The field is perpendicular to the plane.

Infinite parallel-plate capacitor

Coaxial cylinders

If you can't tell where you are with respect to a charge distribution

Then the electric field direction cannot give you a hint.

Original cylinder Translation parallel to the axis Rotation about the axis Reflection in plane containing the axis Reflection perpendicular to the axis

© 2013 Pearson Education, Inc.

(a) Is this a possible electric field of an infinitely long charged cylinder? Suppose the charge and the field are reflected in a plane perpendicular to the axis. Reflection plane + + + + + + + + + \vec{F}

(b) The charge distribution is not changed by the reflection, but the field is. This field doesn't match the symmetry of the cylinder, so the cylinder's field can't look like this.

© 2013 Pearson Education, Inc.

The ONLY field consistent with symmetry of an infinitely long cylinder points radially outward.

What about a hollow sphere?

$\int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\epsilon_0} \qquad E \times (\text{Surface Area}) = \frac{q_{\text{enclosed}}}{\epsilon_0}$

What about a hollow sphere of charge?

What about a hollow sphere?

What about a solid sphere of charge?

What about a solid sphere of charge?

What about a solid sphere of charge?

Electric Field Superposition

Given four identical charges at corners of a square, find direction of field in the center of the square, and in the middle of each side.

Gauss's law

"The total flux through any closed surface is equal to the enclosed charge over epsilon naught".

$$\int \vec{E} \cdot d\vec{A} = \frac{q_{\text{enclosed}}}{\epsilon_0}$$

WTF?

Next Class:

Electric potential ... What's a volt anyway?