Lecture 05: 01/30/2024

Announcements

Written HW#2 due midnight tonight Written HW#2 due Friday Special zoom review session at 7 pm tonight

- Last Time
 - Coulomb's Law
 - Solving problems by adding vectors geometrically
 - Introduction to r-hat
- Today
 - Coulomb's Law

Coulomb vector form and r-hat

Electric field

Electric field lines

SCHEDULE

#	Dates	Reading	Topic	Lab.
1	Jan 16	B1Ch16	Intro, Waves $(v = f\lambda, v = \sqrt{T/\mu})$	no lab
2	Jan 18		Superposition, Standing Waves	
3	Jan 23	B2Ch5	$F = q_1 q_2 / r^2 \hat{r}$, conductors/insulators	Wave Superposition
4	Jan 25		$ec{E}$ -field concept and multi-Q	
5	Jan 30	Ch 5	Field lines and dipoles	Oscilloscope
6	Feb 1	Ch 5	Flux concept and Gauss Law	
7	Feb 6	Ch 6	Field of line, point, plane	Coulomb's Law
8	Feb 8	Ch 6	Gaussian tricks!	
9	Feb 13	Ch 7	PE and Electric Potential	E-field and Superposition
10	Feb 15	Ch 7	$V=\int ec{E}\cdot dec{s}$	
11	Feb 20		V for multi charges	Electric Field Mapping
12	Feb 22		Test 1	
13	Feb 27	Ch 8	Capacitance	Capacitors and Delectrics
14	Feb 29	Ch 8	Capacitance	
15	Mar 5	Ch 9	Current and Resistance	Ohm's Law
16	Mar 7	Ch 9	Current and Resistance	
17	Mar 12	Ch 10	DC Circuits	Kirchoff's Laws
18	Mar 14	Ch 10	Magnetic Forces & Fields	
	Mar 19/21		Spring Break	
10	M 00	Ø1 11	M (* D 0 D* 11	Mr. C. D

Coulomb's Law

$$F = k \frac{q_1 q_2}{r^2}$$

$$k=8.99\times10^{9}\frac{N m^{2}}{C^{2}}$$

Online Problem 2-9

$$q_1=q_2=q$$
 $q_3=-q$
Force on q_2 ?

Online Problem 2-9

 $q_1=q_2=q$ $q_3=-q$ Force on q_2 ?

Problem 9: Three charged particles lie in the xy plane at an angle of θ relative to the x-axis. Charge q_1 is located at the origin, q_2 is a distance r from q_1 , and q_3 is a distance 3r from q_1 . The charges each have magnitude of q, but $q_1 = q_2 = +q$, and $q_3 = -q$. Charges q_1 and q_3 are fixed, and q_2 can move. However, q_1 and q_2 are connected by an ideal, neutral spring of spring constant k_s . The spring is initially not stretched. Let Coulomb's constant be k_e , q_1 and q_2 are positive and q_3 is negative.

richard.sonnenfeld@nmt.edu

@theexpertta.com - tracking id: 3N77-8D-07-4A-9D40-50398. In accordance with Expert TA's Terms of Service, copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.

Part (a) Choose the best expression for the net electrostatic force on q_2 , in terms of the given variables.

Expression	
$\mathbf{F} = \underline{}$	

Select from the variables below to write your expression. Note that all variables may not be required. $cos(\alpha), cos(\phi), cos(\theta), sin(\alpha), sin(\phi), sin(\theta), \gamma, (,), i, j, k_e, n, q, r$

Part (b) Because the force on q_2 is nonzero, it will begin to move from rest. In which direction will it move?

MultipleChoice :

- 1) It will move toward q_3 .
- 2) It will not move.
- 3) There is not enough information.
- 4) It will move out of the xy plane.
- 5) It will move toward q_1 .
- 6) It will move along the +x direction.
- 7) It will move along the +y direction.

Part (c) When q_2 begins to move, it will stretch the spring. Choose the equation for the force vector from the spring, \mathbf{F}_s , due to stretching the spring a dis-

Coulomb's Law, Vector Form

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$\overrightarrow{F_{\text{net}}} = \sum_{n=1}^{N} k \frac{q_1 q_n}{r_{1n}^2} \hat{r}_{1n}$$

$$\overrightarrow{F_{\text{net}}} = Q \sum_{n=1}^{N} k \frac{q_n}{r_n^2} \hat{r}_n$$

Making friends with "r-hat"

r-hat points from other charges to 'your' charge.

 \hat{i} , \hat{j} , and \hat{k}

r points in different directions for different charges

Homework 5-63-ish

Find force on the q on top right corner

$$\overrightarrow{F}_{net} = Q \sum_{n=1}^{N} k \frac{q_n}{r_n^2} \hat{r}_n$$

$$F_{\text{net}} = Q \sum$$

$$\overrightarrow{F}_{net} = Q \sum_{n=1}^{N} k \frac{q_n}{r_n^2} \hat{r}_n$$

What is r_1^2 ?

$$(\mathbf{A}) \ \frac{\sqrt{2}}{2} \mathbf{a}$$

(B)
$$\sqrt{2}$$
 a

(C)
$$\sqrt{2} a^2$$

$$(\mathbf{E}) 2a^2$$

What is $\vec{\mathbf{r}}_1$?

What is
$$r_1$$
?
$$(\lambda + \lambda) \cdot (\lambda + \lambda)$$

$$\lambda \cdot (\lambda + \lambda) \cdot (\lambda +$$

(D)
$$\sqrt{2}a\hat{i} + \sqrt{2}a\hat{j}$$

(E)
$$\frac{\sqrt{2}}{2}$$
 a $\hat{i} + \frac{\sqrt{2}}{2}$ a \hat{j}

What is $\hat{\mathbf{r}}_1$?

$$r_1 = a(1+a)$$

$$(\mathbf{B})$$
 $\hat{\mathbf{i}}$

$$(\mathbf{C})$$
 $\hat{\mathbf{i}} + \hat{\mathbf{j}}$

$$(\mathbf{D})\sqrt{2}\,\hat{\mathbf{i}}+\sqrt{2}\,\hat{\mathbf{j}}$$

$$\mathbf{(E)} \quad \frac{\sqrt{2}}{2} \,\hat{\mathbf{i}} + \frac{\sqrt{2}}{2} \,\hat{\mathbf{j}}$$

From Coulomb's Law to Electric field

$$\overrightarrow{F_{\text{net}}} = Q \sum_{n=1}^{N} k \frac{q_n}{r_n^2} \hat{r}_n$$

$$\vec{E} = \sum_{n=1}^{N} k \frac{q_n}{r_n^2} \hat{r}_n$$

$$\frac{2}{E} = \frac{Q}{A}E_{o}$$

$$\overrightarrow{F_{net}} = \overrightarrow{QE}$$

Homework 5-63-ish with field

Find E-field at top right corner in absence of Q

$$\frac{1}{2} = k \frac{9n^{2}n}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2$$

Superposition (Force)

The net force on -Q is

- A. Up.
- B. Down.
- C. Left.
- D. Right.
- E. The force on -q is zero.

Superposition (Field)

The net field at the position "P" is

- A. Up.
- B. Down.
- C. Left.
- D. Right.
- E. The force on -q is zero.

What is the direction of the field at the 1 nC charge?

Is it (A) Up

(B) Down

(C) Zero

D) Left

(E) Right

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

The Field Model

- The photos show the patterns that iron filings make when sprinkled around a magnet.
- These patterns suggest that space itself around the magnet is filled with magnetic influence.
- This is called the magnetic field.
- The concept of such a "field" was first introduced by Michael Faraday in 1821.

The Field Model

- A *field* is a function that assigns a vector to every point in space.
- The alteration of space around a mass is called the gravitational field.
- Similarly, the space around a charge is altered to create the electric field.

In the Newtonian view, A exerts a force directly on B.

In Faraday's view, A alters the space around it. (The wavy lines are poetic license. We don't know what the alteration looks like.)

Particle B then responds to the altered space. The altered space is the agent that exerts the force on B.

The Electric Field

• If a probe charge (or test charge) "q" experiences an electric force at a point in space, we say that there is an electric field \vec{E} at that point causing the force.

$$\vec{E}(x, y, z) \equiv \frac{\vec{F}_{\text{on } q} \text{ at } (x, y, z)}{q}$$

The units of the electric field are N/C. The magnitude E of the electric field is called the **electric field strength.**

Electric Field Lines

- •A way of getting intuition for the fields caused by a few charges (without calculating)
- •Positive charges "emit" field lines.
- •Negative charges "absorb" field lines.
- •Field lines begin at + charge and end at infinity or negative charge.
- •The tangent to an electric field line gives direction of force
- Electric field lines do not cross

E-field of a + point charge

E-field of a pair of opposite point charges

Field line views

More field line views

PheT ...
Charges and fields
Electric field of dreams

Which set of field lines matches the charges shown?

Key Equations

Coulomb's law

$$\vec{\mathbf{F}}_{12}(r) = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{12}^2} \hat{\mathbf{r}}_{12}$$

Superposition of electric forces

$$\vec{\mathbf{F}}(r) = \frac{1}{4\pi\epsilon_0} Q \sum_{i=1}^{N} \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i$$

Electric force due to an electric field

$$\vec{\mathbf{F}} = Q\vec{\mathbf{E}}$$

Electric field at point P

$$\vec{\mathbf{E}}(P) \equiv \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_i^2} \hat{\mathbf{r}}_i$$

Field of an infinite wire

$$\vec{\mathbf{E}}(z) = \frac{1}{4\pi\epsilon_0} \frac{2\lambda}{z} \hat{\mathbf{k}}$$

Field of an infinite plane

$$\vec{\mathbf{E}} = \frac{\sigma}{2\varepsilon_0} \hat{\mathbf{k}}$$

Dipole moment

$$\overrightarrow{P} = \overrightarrow{q}$$

Coulomb's Law and Gravitation

$$F_E = k \frac{q_1 q_2}{r^2}$$

$$F_G = G \frac{m_1 m_2}{r^2}$$

$$k=8.99\times10^9 \frac{N m^2}{C^2}$$
 $G=6.674\times10^{-11} N m^2/kg^2$

$$G = 6.674 \times 10^{-11} \,\mathrm{N \, m^2/kg^2}$$

Why do masses attract?

Why do charges attract/repel?

Next Class:

Electric field and flux