Lecture 02:

01/18/2024

- Announcements

Recitation - That assessment thing Clickers - Next Thursday
Homeworks were extended (online Tues/Written Thurs)

- Waves
- T, f, omega, lambda, k
- Worked problems
- Standing waves

Getting to know you

- Show us the formula and explain it
- Teach us about circuits and electricity
- Ask us about pets, favorite food and our backgrounds
- I'm a little nervous about the workload
- I enjoy solving difficult problems (eventually)
- I like to help people
- Don't forget to explain a variable
- I like group work / I don't like group work
- Give examples
- Give more examples
- Give lots of examples
- Ask about the largest animal we can take in a fight

Text

- The text is wordy, but backs up the lecture
- The text does derivations, and I will (mostly) not.

iClicker

- We will start using iClicker cloud next week. - Go to www.iclicker.com and "Create an account"

今 i Clicker
iClicker makes classroom engagement easy

Create meaningful connections with a student engagement
system that works for you. Whatever your teaching style, wherever your students are, iClicker supports learning and student success with research-backed learning strategies.

Sine/cosine waves

$$
\begin{aligned}
& \text { Sine/cosine waves } \\
& \begin{array}{l}
A \sin k x=y \\
k=0 \\
k x=2 \pi
\end{array} \\
& \left.\begin{array}{l}
x=\lambda \\
k=2 \pi
\end{array}\right] \\
& k=\frac{2 \pi}{\lambda} y=A \sin (k x-\omega t)
\end{aligned}
$$

Math of Waves

What is the period of
$y=A \sin (k x+\omega t)$
(A) $\mathrm{T}=2 \pi$
(B) $\mathrm{T}=\pi$
(C) $\mathrm{T}=\frac{\omega}{2 \pi}$
(D) $\mathrm{T}=\frac{2 \pi}{\omega}$

Math of Waves

What is the wavelength of
$y=A \sin (k x-\omega t)$
(A) $\lambda=\frac{v}{\mathrm{f}}$
(B) $\lambda=\frac{\omega}{\mathrm{k}}$
(C) $\lambda=\frac{2 \pi}{\mathrm{k}}$
(D) $\lambda=\frac{2 \pi}{\mathrm{kv}}$

Ch 16: 120 (like 40, 41)
A radio station broadcasts at 101.7 MHz . What is the wavelength of the waves? $\quad 3.00$

Identify: The gave us f and asked λ

$$
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$ Did they give v ? Yes ... v = c

Develop: $v=\mathrm{f} \lambda$

$\lambda=\frac{c}{f}$
Execute: \qquad

$$
\lambda=3
$$

Assess:

$$
1.017 \times 19^{8} \mathrm{~Hz}
$$

$\mathrm{m} / \mathrm{s} \cdot \mathrm{s}=\mathrm{m}$
$C=2.998 \ldots$

Ch 16: 73b (like 47, 48)

A sinusoidal wave travels down a taut horizontal string With linear mass density $\mu=0.06 \mathrm{~kg} / \mathrm{m}$ The maximum vertical speed is $\mathrm{v}_{\mathrm{y}_{\mathrm{max}}}=0.30 \mathrm{~cm} / \mathrm{s}$
The wave equation is $\left.y(x, t)=A \sin \left(\frac{6.00}{m}\right) x-\left(\frac{24}{\mathrm{~s}}\right) \mathrm{t}\right)$
What is v_{x} ?

$$
V=f \lambda
$$

Identify: Can we calculate v_{x} ?
Develop: $v_{x}=\frac{\omega}{k} \quad y(x, t)=A \sin (k x-\omega t)$

$$
k=\frac{2 \pi}{\lambda} \rightarrow \lambda=\frac{2 \pi}{k}
$$

Execute:

$$
\begin{gathered}
w=2 \pi f \\
f=\frac{w}{k}=\frac{24}{6}=4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Assess:

$$
=\underbrace{\omega}_{2 \pi} \frac{2 \pi}{k}
$$

Ch 16: 73b (like 47, 48)

A sinusoidal wave travels down a taut horizontal string With linear mass density $\mu=0.06 \mathrm{~kg} / \mathrm{m}$
The maximum vertical speed is $v_{y_{\text {max }}}=0.30 \mathrm{~cm} / \mathrm{s}$
The wave equation is $y(x, t)=A \sin \left(\frac{6.00}{m} x-\frac{24}{s} t\right)$
What is v_{x} ?
Develop:
Execute:
Assess:

Ch 16: 73a (like 72)

A sinusoidal wave travels down a taut horizontal string With linear mass density $\mu=0.06 \mathrm{~kg} / \mathrm{m}$
The maximum vertical speed is $v_{y_{\max }}=0.30 \mathrm{~cm} / \mathrm{s}$
The wave equation is $y(x, t)=A \sin \left(\frac{6.00}{m} x-\frac{24}{s} t\right)$
What is A?
Is there a relation between v_{y} and A ?
Develop:

$$
v_{y}=\frac{d y}{d t} \quad y(x, t)=A \sin (k x-\omega t) \quad V_{y}=\frac{d y}{d t}=
$$

Execute:
Assess:

$$
V_{y}=\omega A \longleftarrow V_{y}=i \omega A \cos (k x-\omega b)
$$

$$
\begin{aligned}
& \text { (} \\
& V_{y}=3 \times 10^{-3} \mathrm{~m} / \mathrm{s} \\
& A=V_{y} / \omega \\
& \omega=24 \mathrm{rad} / \mathrm{s} \\
& \begin{array}{r}
A=\frac{24}{3 \times 10^{-3}}=\frac{1}{8000} \text { oops--wrong! } A=\frac{3 \times 10^{-3}}{24} \\
A_{A}=1.25 \times 10^{14-4} \mathrm{~m}
\end{array}
\end{aligned}
$$

$$
V_{y}=\quad A=\frac{V_{y}}{\omega}=\frac{\mathrm{m} / \mathrm{s}}{1 \mathrm{~s}}=\mathrm{m}
$$

Ch 16: 73a (like 72)

A sinusoidal wave travels down a taut horizontal string With linear mass density $\mu=0.06 \mathrm{~kg} / \mathrm{m}$
The maximum vertical speed is $\mathrm{v}_{\mathrm{y}_{\max }}=0.30 \mathrm{~cm} / \mathrm{s}$
The wave equation is $y(x, t)=A \sin \left(\frac{6.00}{m} x-\frac{24}{s} t\right)$
What is A?
Is there a relation between v_{y} and A ?
Develop:
Execute:
Assess:

Standing Waves

$V=\sqrt{\Gamma / \mu}$ If you create a wave with fixed ends, it can only have certain wavelengths

$\lambda_{n}=\frac{2}{n} L$

$n=2 \longrightarrow \lambda_{2}=L \quad \lambda_{2}=\frac{2}{2} L$
ne $\longrightarrow \frac{3}{2} \lambda_{3}=L \quad \lambda_{3}=\frac{2}{3} L$
$n=4$
$\frac{4}{2} \lambda_{4}=L \quad \lambda_{4}=\frac{2}{4} L$

$$
\lambda_{n}=\frac{2}{n} L \quad n=1,2,3, \ldots
$$

Why are they "standing"

They don't appear to be moving left to right ... they just oscillate up and down.

They can be made by adding a wave traveling left to a wave traveling right.

$$
\begin{aligned}
y_{1}= & A \sin k x-\omega t \\
= & A \sin k x+\omega t \\
& 2 A \sin k x \cos \omega t
\end{aligned}
$$

Ch 16: 104 (like 103)
$\mathrm{L}=2 \mathrm{~m} \quad \mu=6 \mathrm{~g} / \mathrm{m} \quad \mathrm{m}=2 \mathrm{~kg}$ What are λ and f for $\mathrm{n}=6$?

Identify: What the heck is $\mathrm{n}=6$?
Develop:
Execute:
Assess:
$T=m q=(2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ $\lambda=\frac{2}{n} L$ $=\sum_{6}^{2}=\frac{2}{6} L=\frac{2}{6} \cdot 2=2 / 3 \mathrm{~m}$

$$
V=f^{6} \lambda^{6}=f=\frac{V}{\lambda}=\sqrt{\frac{T}{\mu}} \frac{1}{\lambda}
$$

String vibrator

Ch 16: 104 (like 103)

$\mathrm{L}=2 \mathrm{~m} \quad \mu=6 \mathrm{~g} / \mathrm{m} \quad \mathrm{m}=2 \mathrm{~kg}$
What are λ and f for $\mathrm{n}=6$?

Ch 16: 104 (like 103)

$\mathrm{L}=2 \mathrm{~m} \quad \mu=6 \mathrm{~g} / \mathrm{m} \quad \mathrm{m}=2 \mathrm{~kg}$
What are λ and f for $n=6$?
Identify: What the heck is $\mathrm{n}=6$?
Develop: $\quad \lambda_{6}=\frac{2}{6} \mathrm{~L}$
Execute:
Assess:

pHeT time?

Key Equations

Wave speed

Linear mass density

Speed of a wave or pulse on a string under tension

Speed of a compression wave in a fluid

Resultant wave from superposition of two sinusoidal waves that are identical except for a phase shift

Wave number

Wave speed

$$
v=\frac{\lambda}{T}=\lambda f
$$

$\mu=\frac{\text { mass of the string }}{\text { length of the string }}$

$$
|v|=\sqrt{\frac{F_{T}}{\mu}}
$$

$y_{R}(x, t)=\left[\begin{array}{ll}{[} & (\phi)] .(2)]\end{array} k x-\omega t+\frac{\phi}{2}\right)$
$k \equiv \frac{2 \pi}{\lambda}$
$v=\frac{\omega}{k}$

A periodic wave

Phase of a wave

The linear wave equation

Power averaged over a wavelength

Intensity

$$
y(x, t)=A \sin (k x \mp \omega t+\phi)
$$

$k x \mp \omega t+\phi$

Intensity for a spherical wave

Equation of a standing wave
Wavelength for symmetric boundary conditions
$\lambda_{n}=\frac{2}{n} L, \quad n=1,2,3,4,5 \ldots$

Frequency for symmetric boundary conditions $f_{n}=n \frac{v}{2 L}=n f_{1}, \quad n=1,2,3,4,5 \ldots$

Next Class:

Introduction to charge and Coulomb's law

