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For the past few chapters, we have been studying electrostatic forces and fields, which are
caused by electric charges at rest. These electric fields can move other free charges, such as producing a
current in a circuit; however, the electrostatic forces and fields themselves come from other static charges. In
this chapter, we see that when an electric charge moves, it generates other forces and fields. These additional
forces and fields are what we commonly call magnetism.

Before we examine the origins of magnetism, we first describe what it is and how magnetic fields behave. Once
we are more familiar with magnetic effects, we can explain how they arise from the behavior of atoms and

Figure 11.1 An industrial electromagnet is capable of lifting thousands of pounds of metallic waste. (credit:
modification of work by “BedfordAl”/Flickr)
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molecules, and how magnetism is related to electricity. The connection between electricity and magnetism is
fascinating from a theoretical point of view, but it is also immensely practical, as shown by an industrial
electromagnet that can lift thousands of pounds of metal.

11.1 Magnetism and Its Historical Discoveries
Learning Objectives
By the end of this section, you will be able to:

• Explain attraction and repulsion by magnets
• Describe the historical and contemporary applications of magnetism

Magnetism has been known since the time of the ancient Greeks, but it has always been a bit mysterious. You
can see electricity in the flash of a lightning bolt, but when a compass needle points to magnetic north, you
can’t see any force causing it to rotate. People learned about magnetic properties gradually, over many years,
before several physicists of the nineteenth century connected magnetism with electricity. In this section, we
review the basic ideas of magnetism and describe how they fit into the picture of a magnetic field.

Brief History of Magnetism
Magnets are commonly found in everyday objects, such as toys, hangers, elevators, doorbells, and computer
devices. Experimentation on these magnets shows that all magnets have two poles: One is labeled north (N)
and the other is labeled south (S). Magnetic poles repel if they are alike (both N or both S), they attract if they
are opposite (one N and the other S), and both poles of a magnet attract unmagnetized pieces of iron. An
important point to note here is that you cannot isolate an individual magnetic pole. Every piece of a magnet, no
matter how small, which contains a north pole must also contain a south pole.

INTERACTIVE

Visit this website (https://openstax.org/l/21magnetcompass) for an interactive demonstration of magnetic
north and south poles.

An example of a magnet is a compass needle. It is simply a thin bar magnet suspended at its center, so it is free
to rotate in a horizontal plane. Earth itself also acts like a very large bar magnet, with its south-seeking pole
near the geographic North Pole (Figure 11.2). The north pole of a compass is attracted toward Earth’s
geographic North Pole because the magnetic pole that is near the geographic North Pole is actually a south
magnetic pole. Confusion arises because the geographic term “North Pole” has come to be used (incorrectly)
for the magnetic pole that is near the North Pole. Thus, “north magnetic pole” is actually a misnomer—it
should be called the south magnetic pole. [Note that the orientation of Earth’s magnetic field is not permanent
but changes (“flips”) after long time intervals. Eventually, Earth’s north magnetic pole may be located near its
geographic North Pole.]
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Figure 11.2 The north pole of a compass needle points toward the south pole of a magnet, which is how today’s magnetic field is oriented

from inside Earth. It also points toward Earth’s geographic North Pole because the geographic North Pole is near the magnetic south pole.

Back in 1819, the Danish physicist Hans Oersted was performing a lecture demonstration for some students
and noticed that a compass needle moved whenever current flowed in a nearby wire. Further investigation of
this phenomenon convinced Oersted that an electric current could somehow cause a magnetic force. He
reported this finding to an 1820 meeting of the French Academy of Science.

Soon after this report, Oersted’s investigations were repeated and expanded upon by other scientists. Among
those whose work was especially important were Jean-Baptiste Biot and Felix Savart, who investigated the
forces exerted on magnets by currents; André Marie Ampère, who studied the forces exerted by one current on
another; François Arago, who found that iron could be magnetized by a current; and Humphry Davy, who
discovered that a magnet exerts a force on a wire carrying an electric current. Within 10 years of Oersted’s
discovery, Michael Faraday found that the relative motion of a magnet and a metallic wire induced current in
the wire. This finding showed not only that a current has a magnetic effect, but that a magnet can generate
electric current. You will see later that the names of Biot, Savart, Ampère, and Faraday are linked to some of
the fundamental laws of electromagnetism.

The evidence from these various experiments led Ampère to propose that electric current is the source of all
magnetic phenomena. To explain permanent magnets, he suggested that matter contains microscopic current
loops that are somehow aligned when a material is magnetized. Today, we know that permanent magnets are
actually created by the alignment of spinning electrons, a situation quite similar to that proposed by Ampère.
This model of permanent magnets was developed by Ampère almost a century before the atomic nature of
matter was understood. (For a full quantum mechanical treatment of magnetic spins, see Quantum Mechanics
and Atomic Structure.)

Contemporary Applications of Magnetism
Today, magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has
enabled the development of technologies that affect both individuals and society. The electronic tablet in your
purse or backpack, for example, wouldn’t have been possible without the applications of magnetism and
electricity on a small scale (Figure 11.3). Weak changes in a magnetic field in a thin film of iron and chromium
were discovered to bring about much larger changes in resistance, called giant magnetoresistance.
Information can then be recorded magnetically based on the direction in which the iron layer is magnetized.
As a result of the discovery of giant magnetoresistance and its applications to digital storage, the 2007 Nobel
Prize in Physics was awarded to Albert Fert from France and Peter Grunberg from Germany.
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Figure 11.3 Engineering technology like computer storage would not be possible without a deep understanding of magnetism. (credit:

Klaus Eifert)

All electric motors—with uses as diverse as powering refrigerators, starting cars, and moving
elevators—contain magnets. Generators, whether producing hydroelectric power or running bicycle lights, use
magnetic fields. Recycling facilities employ magnets to separate iron from other refuse. Research into using
magnetic containment of fusion as a future energy source has been continuing for several years. Magnetic
resonance imaging (MRI) has become an important diagnostic tool in the field of medicine, and the use of
magnetism to explore brain activity is a subject of contemporary research and development. The list of
applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation
of high-speed trains. Magnetism is involved in the structure of atomic energy levels, as well as the motion of
cosmic rays and charged particles trapped in the Van Allen belts around Earth. Once again, we see that all
these disparate phenomena are linked by a small number of underlying physical principles.

11.2 Magnetic Fields and Lines
Learning Objectives
By the end of this section, you will be able to:

• Define the magnetic field based on a moving charge experiencing a force
• Apply the right-hand rule to determine the direction of a magnetic force based on the motion of a charge in a

magnetic field
• Sketch magnetic field lines to understand which way the magnetic field points and how strong it is in a

region of space

We have outlined the properties of magnets, described how they behave, and listed some of the applications of
magnetic properties. Even though there are no such things as isolated magnetic charges, we can still define the
attraction and repulsion of magnets as based on a field. In this section, we define the magnetic field, determine
its direction based on the right-hand rule, and discuss how to draw magnetic field lines.

Defining the Magnetic Field
A magnetic field is defined by the force that a charged particle experiences moving in this field, after we
account for the gravitational and any additional electric forces possible on the charge. The magnitude of this
force is proportional to the amount of charge q, the speed of the charged particle v, and the magnitude of the
applied magnetic field. The direction of this force is perpendicular to both the direction of the moving charged
particle and the direction of the applied magnetic field. Based on these observations, we define the magnetic
field strength B based on the magnetic force on a charge q moving at velocity as the cross product of the
velocity and magnetic field, that is,

In fact, this is how we define the magnetic field —in terms of the force on a charged particle moving in a

11.1
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magnetic field. The magnitude of the force is determined from the definition of the cross product as it relates
to the magnitudes of each of the vectors. In other words, the magnitude of the force satisfies

where θ is the angle between the velocity and the magnetic field.

The SI unit for magnetic field strength B is called the tesla (T) after the eccentric but brilliant inventor Nikola
Tesla (1856–1943), where

A smaller unit, called the gauss (G), where is sometimes used. The strongest permanent
magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. Earth’s magnetic field
on its surface is only about or 0.5 G.

PROBLEM-SOLVING STRATEGY

Direction of the Magnetic Field by the Right-Hand Rule
The direction of the magnetic force is perpendicular to the plane formed by and as determined by the
right-hand rule-1 (or RHR-1), which is illustrated in Figure 11.4.

1. Orient your right hand so that your fingers curl in the plane defined by the velocity and magnetic field
vectors.

2. Using your right hand, sweep from the velocity toward the magnetic field with your fingers through the
smallest angle possible.

3. The magnetic force is directed where your thumb is pointing.
4. If the charge was negative, reverse the direction found by these steps.

Figure 11.4 Magnetic fields exert forces on moving charges. The direction of the magnetic force on a moving charge is perpendicular to

the plane formed by and and follows the right-hand rule-1 (RHR-1) as shown. The magnitude of the force is proportional to and

the sine of the angle between and

INTERACTIVE

Visit this website (https://openstax.org/l/21magfields) for additional practice with the direction of magnetic
fields.

There is no magnetic force on static charges. However, there is a magnetic force on charges moving at an angle
to a magnetic field. When charges are stationary, their electric fields do not affect magnets. However, when
charges move, they produce magnetic fields that exert forces on other magnets. When there is relative motion,

11.2

11.3
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a connection between electric and magnetic forces emerges—each affects the other.

EXAMPLE 11.1

An Alpha-Particle Moving in a Magnetic Field
An alpha-particle moves through a uniform magnetic field whose magnitude is 1.5 T. The
field is directly parallel to the positive z-axis of the rectangular coordinate system of Figure 11.5. What is the
magnetic force on the alpha-particle when it is moving (a) in the positive x-direction with a speed of

(b) in the negative y-direction with a speed of (c) in the positive z-direction with
a speed of (d) with a velocity

Figure 11.5 The magnetic forces on an alpha-particle moving in a uniform magnetic field. The field is the same in each drawing, but the

velocity is different.

Strategy
We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the
equation or to calculate the force. The direction of the force is determined by
RHR-1.

Solution

a. First, to determine the direction, start with your fingers pointing in the positive x-direction. Sweep your
fingers upward in the direction of magnetic field. Your thumb should point in the negative y-direction.
This should match the mathematical answer. To calculate the force, we use the given charge, velocity, and
magnetic field and the definition of the magnetic force in cross-product form to calculate:
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b. First, to determine the directionality, start with your fingers pointing in the negative y-direction. Sweep
your fingers upward in the direction of magnetic field as in the previous problem. Your thumb should be
open in the negative x-direction. This should match the mathematical answer. To calculate the force, we
use the given charge, velocity, and magnetic field and the definition of the magnetic force in cross-product
form to calculate:

An alternative approach is to use Equation 11.2 to find the magnitude of the force. This applies for both
parts (a) and (b). Since the velocity is perpendicular to the magnetic field, the angle between them is 90
degrees. Therefore, the magnitude of the force is:

c. Since the velocity and magnetic field are parallel to each other, there is no orientation of your hand that
will result in a force direction. Therefore, the force on this moving charge is zero. This is confirmed by the
cross product. When you cross two vectors pointing in the same direction, the result is equal to zero.

d. First, to determine the direction, your fingers could point in any orientation; however, you must sweep
your fingers upward in the direction of the magnetic field. As you rotate your hand, notice that the thumb
can point in any x- or y-direction possible, but not in the z-direction. This should match the mathematical
answer. To calculate the force, we use the given charge, velocity, and magnetic field and the definition of
the magnetic force in cross-product form to calculate:

This solution can be rewritten in terms of a magnitude and angle in the xy-plane:

The magnitude of the force can also be calculated using Equation 11.2. The velocity in this question,
however, has three components. The z-component of the velocity can be neglected, because it is parallel to
the magnetic field and therefore generates no force. The magnitude of the velocity is calculated from the x-
and y-components. The angle between the velocity in the xy-plane and the magnetic field in the z-plane is
90 degrees. Therefore, the force is calculated to be:

This is the same magnitude of force calculated by unit vectors.

Significance
The cross product in this formula results in a third vector that must be perpendicular to the other two. Other
physical quantities, such as angular momentum, also have three vectors that are related by the cross product.
Note that typical force values in magnetic force problems are much larger than the gravitational force.
Therefore, for an isolated charge, the magnetic force is the dominant force governing the charge’s motion.

CHECK YOUR UNDERSTANDING 11.1

Repeat the previous problem with the magnetic field in the x-direction rather than in the z-direction. Check
your answers with RHR-1.
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Representing Magnetic Fields
The representation of magnetic fields by magnetic field lines is very useful in visualizing the strength and
direction of the magnetic field. As shown in Figure 11.6, each of these lines forms a closed loop, even if not
shown by the constraints of the space available for the figure. The field lines emerge from the north pole (N),
loop around to the south pole (S), and continue through the bar magnet back to the north pole.

Magnetic field lines have several hard-and-fast rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point
in the direction of the field line.

2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of
lines per unit area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.
4. Magnetic field lines are continuous, forming closed loops without a beginning or end. They are directed from

the north pole to the south pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct
difference from electric field lines, which generally begin on positive charges and end on negative charges or at
infinity. If isolated magnetic charges (referred to as magnetic monopoles) existed, then magnetic field lines
would begin and end on them.

Figure 11.6 Magnetic field lines are defined to have the direction in which a small compass points when placed at a location in the field.

The strength of the field is proportional to the closeness (or density) of the lines. If the interior of the magnet could be probed, the field

lines would be found to form continuous, closed loops. To fit in a reasonable space, some of these drawings may not show the closing of the

loops; however, if enough space were provided, the loops would be closed.

11.3 Motion of a Charged Particle in a Magnetic Field
Learning Objectives
By the end of this section, you will be able to:

• Explain how a charged particle in an external magnetic field undergoes circular motion
• Describe how to determine the radius of the circular motion of a charged particle in a magnetic field

A charged particle experiences a force when moving through a magnetic field. What happens if this field is
uniform over the motion of the charged particle? What path does the particle follow? In this section, we discuss
the circular motion of the charged particle as well as other motion that results from a charged particle entering
a magnetic field.

The simplest case occurs when a charged particle moves perpendicular to a uniform B-field (Figure 11.7). If
the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic
force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field.
The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is
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that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The
particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.

Figure 11.7 A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the

paper (represented by the small ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in

direction but not magnitude. The result is uniform circular motion. (Note that because the charge is negative, the force is opposite in

direction to the prediction of the right-hand rule.)

In this situation, the magnetic force supplies the centripetal force Noting that the velocity is
perpendicular to the magnetic field, the magnitude of the magnetic force is reduced to Because the
magnetic force F supplies the centripetal force we have

Solving for r yields

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q, moving at a speed
v that is perpendicular to a magnetic field of strength B. The time for the charged particle to go around the
circular path is defined as the period, which is the same as the distance traveled (the circumference) divided
by the speed. Based on this and Equation 11.4, we can derive the period of motion as

If the velocity is not perpendicular to the magnetic field, then we can compare each component of the velocity
separately with the magnetic field. The component of the velocity perpendicular to the magnetic field
produces a magnetic force perpendicular to both this velocity and the field:

where is the angle between v and B. The component parallel to the magnetic field creates constant motion
along the same direction as the magnetic field, also shown in Equation 11.7. The parallel motion determines
the pitch p of the helix, which is the distance between adjacent turns. This distance equals the parallel
component of the velocity times the period:

11.4

11.5

11.6

11.7
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The result is a helical motion, as shown in the following figure.

Figure 11.8 A charged particle moving with a velocity not in the same direction as the magnetic field. The velocity component

perpendicular to the magnetic field creates circular motion, whereas the component of the velocity parallel to the field moves the particle

along a straight line. The pitch is the horizontal distance between two consecutive circles. The resulting motion is helical.

While the charged particle travels in a helical path, it may enter a region where the magnetic field is not
uniform. In particular, suppose a particle travels from a region of strong magnetic field to a region of weaker
field, then back to a region of stronger field. The particle may reflect back before entering the stronger
magnetic field region. This is similar to a wave on a string traveling from a very light, thin string to a hard wall
and reflecting backward. If the reflection happens at both ends, the particle is trapped in a so-called magnetic
bottle.

Trapped particles in magnetic fields are found in the Van Allen radiation belts around Earth, which are part of
Earth’s magnetic field. These belts were discovered by James Van Allen while trying to measure the flux of
cosmic rays on Earth (high-energy particles that come from outside the solar system) to see whether this was
similar to the flux measured on Earth. Van Allen found that due to the contribution of particles trapped in
Earth’s magnetic field, the flux was much higher on Earth than in outer space. Aurorae, like the famous aurora
borealis (northern lights) in the Northern Hemisphere (Figure 11.9), are beautiful displays of light emitted as
ions recombine with electrons entering the atmosphere as they spiral along magnetic field lines. (The ions are
primarily oxygen and nitrogen atoms that are initially ionized by collisions with energetic particles in Earth’s
atmosphere.) Aurorae have also been observed on other planets, such as Jupiter and Saturn.

11.8
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Figure 11.9 (a) The Van Allen radiation belts around Earth trap ions produced by cosmic rays striking Earth’s atmosphere. (b) The

magnificent spectacle of the aurora borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force Base,

Alaska. Shaped by Earth’s magnetic field, this light is produced by glowing molecules and ions of oxygen and nitrogen. (credit b:

modification of work by USAF Senior Airman Joshua Strang)

EXAMPLE 11.2

Beam Deflector
A research group is investigating short-lived radioactive isotopes. They need to design a way to transport
alpha-particles (helium nuclei) from where they are made to a place where they will collide with another
material to form an isotope. The beam of alpha-particles bends
through a 90-degree region with a uniform magnetic field of 0.050 T (Figure 11.10). (a) In what direction
should the magnetic field be applied? (b) How much time does it take the alpha-particles to traverse the
uniform magnetic field region?

Figure 11.10 Top view of the beam deflector setup.

Strategy

a. The direction of the magnetic field is shown by the RHR-1. Your fingers point in the direction of v, and your
thumb needs to point in the direction of the force, to the left. Therefore, since the alpha-particles are
positively charged, the magnetic field must point down.
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b. The period of the alpha-particle going around the circle is

Because the particle is only going around a quarter of a circle, we can take 0.25 times the period to find the
time it takes to go around this path.

Solution

a. Let’s start by focusing on the alpha-particle entering the field near the bottom of the picture. First, point
your thumb up the page. In order for your palm to open to the left where the centripetal force (and hence
the magnetic force) points, your fingers need to change orientation until they point into the page. This is
the direction of the applied magnetic field.

b. The period of the charged particle going around a circle is calculated by using the given mass, charge, and
magnetic field in the problem. This works out to be

However, for the given problem, the alpha-particle goes around a quarter of the circle, so the time it takes
would be

Significance
This time may be quick enough to get to the material we would like to bombard, depending on how short-lived
the radioactive isotope is and continues to emit alpha-particles. If we could increase the magnetic field applied
in the region, this would shorten the time even more. The path the particles need to take could be shortened,
but this may not be economical given the experimental setup.

CHECK YOUR UNDERSTANDING 11.2

A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east. (a) What is the magnetic
force on a proton at the instant when it is moving vertically downward in the field with a speed of
(b) Compare this force with the weight w of a proton.

EXAMPLE 11.3

Helical Motion in a Magnetic Field
A proton enters a uniform magnetic field of with a speed of At what angle must the
magnetic field be from the velocity so that the pitch of the resulting helical motion is equal to the radius of the
helix?

Strategy
The pitch of the motion relates to the parallel velocity times the period of the circular motion, whereas the
radius relates to the perpendicular velocity component. After setting the radius and the pitch equal to each
other, solve for the angle between the magnetic field and velocity or

Solution
The pitch is given by Equation 11.8, the period is given by Equation 11.6, and the radius of circular motion is
given by Equation 11.5. Note that the velocity in the radius equation is related to only the perpendicular
velocity, which is where the circular motion occurs. Therefore, we substitute the sine component of the overall
velocity into the radius equation to equate the pitch and radius:

11.9

490 11 • Magnetic Forces and Fields

Access for free at openstax.org.



Significance
If this angle were only parallel velocity would occur and the helix would not form, because there would be
no circular motion in the perpendicular plane. If this angle were only circular motion would occur and
there would be no movement of the circles perpendicular to the motion. That is what creates the helical
motion.

11.4 Magnetic Force on a Current-Carrying Conductor
Learning Objectives
By the end of this section, you will be able to:

• Determine the direction in which a current-carrying wire experiences a force in an external magnetic field
• Calculate the force on a current-carrying wire in an external magnetic field

Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire
is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on
a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are
studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and
the magnetic field exerts a force on the current-carrying wire.

Magnetic Fields Produced by Electrical Currents
When discussing historical discoveries in magnetism, we mentioned Oersted’s finding that a wire carrying an
electrical current caused a nearby compass to deflect. A connection was established that electrical currents
produce magnetic fields. (This connection between electricity and magnetism is discussed in more detail in
Sources of Magnetic Fields.)

The compass needle near the wire experiences a force that aligns the needle tangent to a circle around the
wire. Therefore, a current-carrying wire produces circular loops of magnetic field. To determine the direction
of the magnetic field generated from a wire, we use a second right-hand rule. In RHR-2, your thumb points in
the direction of the current while your fingers wrap around the wire, pointing in the direction of the magnetic
field produced (Figure 11.11). If the magnetic field were coming at you or out of the page, we represent this
with a dot. If the magnetic field were going into the page, we represent this with an These symbols come
from considering a vector arrow: An arrow pointed toward you, from your perspective, would look like a dot or
the tip of an arrow. An arrow pointed away from you, from your perspective, would look like a cross or an A
composite sketch of the magnetic circles is shown in Figure 11.11, where the field strength is shown to
decrease as you get farther from the wire by loops that are farther separated.
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Figure 11.11 (a) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note the symbols used for the field

pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow). (b) A long and straight wire creates a field

with magnetic field lines forming circular loops.

Calculating the Magnetic Force
Electric current is an ordered movement of charge. A current-carrying wire in a magnetic field must therefore
experience a force due to the field. To investigate this force, let’s consider the infinitesimal section of wire as
shown in Figure 11.12. The length and cross-sectional area of the section are dl and A, respectively, so its
volume is The wire is formed from material that contains n charge carriers per unit volume, so the
number of charge carriers in the section is If the charge carriers move with drift velocity the
current I in the wire is (from Current and Resistance)

The magnetic force on any single charge carrier is so the total magnetic force on the
charge carriers in the section of wire is

We can define dl to be a vector of length dl pointing along which allows us to rewrite this equation as

or

This is the magnetic force on the section of wire. Note that it is actually the net force exerted by the field on the
charge carriers themselves. The direction of this force is given by RHR-1, where you point your fingers in the
direction of the current and curl them toward the field. Your thumb then points in the direction of the force.

11.10

11.11
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Figure 11.12 An infinitesimal section of current-carrying wire in a magnetic field.

To determine the magnetic force on a wire of arbitrary length and shape, we must integrate Equation 11.12
over the entire wire. If the wire section happens to be straight and B is uniform, the equation differentials
become absolute quantities, giving us

This is the force on a straight, current-carrying wire in a uniform magnetic field.

EXAMPLE 11.4

Balancing the Gravitational and Magnetic Forces on a Current-Carrying Wire
A wire of length 50 cm and mass 10 g is suspended in a horizontal plane by a pair of flexible leads (Figure
11.13). The wire is then subjected to a constant magnetic field of magnitude 0.50 T, which is directed as shown.
What are the magnitude and direction of the current in the wire needed to remove the tension in the
supporting leads?

Figure 11.13 (a) A wire suspended in a magnetic field. (b) The free-body diagram for the wire.

Strategy
From the free-body diagram in the figure, the tensions in the supporting leads go to zero when the
gravitational and magnetic forces balance each other. Using the RHR-1, we find that the magnetic force points
up. We can then determine the current I by equating the two forces.

11.13
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Solution
Equate the two forces of weight and magnetic force on the wire:

Thus,

Significance
This large magnetic field creates a significant force on a length of wire to counteract the weight of the wire.

EXAMPLE 11.5

Calculating Magnetic Force on a Current-Carrying Wire
A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a
constant magnetic field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force
per unit length on the wire? (b) If a constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis
towards the +y-axis, what is the magnetic force per unit length on the wire?

Strategy

The magnetic force on a current-carrying wire in a magnetic field is given by For part a, since
the current and magnetic field are perpendicular in this problem, we can simplify the formula to give us the
magnitude and find the direction through the RHR-1. The angle θ is 90 degrees, which means Also,
the length can be divided over to the left-hand side to find the force per unit length. For part b, the current
times length is written in unit vector notation, as well as the magnetic field. After the cross product is taken,
the directionality is evident by the resulting unit vector.

Solution

a. We start with the general formula for the magnetic force on a wire. We are looking for the force per unit
length, so we divide by the length to bring it to the left-hand side. We also set The solution
therefore is

Directionality: Point your fingers in the positive y-direction and curl your fingers in the positive
x-direction. Your thumb will point in the direction. Therefore, with directionality, the solution is

b. The current times length and the magnetic field are written in unit vector notation. Then, we take the cross
product to find the force:

Significance
This large magnetic field creates a significant force on a small length of wire. As the angle of the magnetic field
becomes more closely aligned to the current in the wire, there is less of a force on it, as seen from comparing
parts a and b.
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CHECK YOUR UNDERSTANDING 11.3

A straight, flexible length of copper wire is immersed in a magnetic field that is directed into the page. (a) If the
wire’s current runs in the +x-direction, which way will the wire bend? (b) Which way will the wire bend if the
current runs in the –x-direction?

EXAMPLE 11.6

Force on a Circular Wire
A circular current loop of radius R carrying a current I is placed in the xy-plane. A constant uniform magnetic
field cuts through the loop parallel to the y-axis (Figure 11.14). Find the magnetic force on the upper half of the
loop, the lower half of the loop, and the total force on the loop.

Figure 11.14 A loop of wire carrying a current in a magnetic field.

Strategy
The magnetic force on the upper loop should be written in terms of the differential force acting on each
segment of the loop. If we integrate over each differential piece, we solve for the overall force on that section of
the loop. The force on the lower loop is found in a similar manner, and the total force is the addition of these
two forces.

Solution
A differential force on an arbitrary piece of wire located on the upper ring is:

where is the angle between the magnetic field direction (+y) and the segment of wire. A differential segment
is located at the same radius, so using an arc-length formula, we have:

In order to find the force on a segment, we integrate over the upper half of the circle, from 0 to This results
in:

The lower half of the loop is integrated from to zero, giving us:

The net force is the sum of these forces, which is zero.
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Significance
The total force on any closed loop in a uniform magnetic field is zero. Even though each piece of the loop has a
force acting on it, the net force on the system is zero. (Note that there is a net torque on the loop, which we
consider in the next section.)

11.5 Force and Torque on a Current Loop
Learning Objectives
By the end of this section, you will be able to:

• Evaluate the net force on a current loop in an external magnetic field
• Evaluate the net torque on a current loop in an external magnetic field
• Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of
wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the
loops, which rotates a shaft. Electrical energy is converted into mechanical work in the process. Once the loop’s
surface area is aligned with the magnetic field, the direction of current is reversed, so there is a continual
torque on the loop (Figure 11.15). This reversal of the current is done with commutators and brushes. The
commutator is set to reverse the current flow at set points to keep continual motion in the motor. A basic
commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous
torque at that point. The brushes press against the commutator, creating electrical contact between parts of
the commutator during the spinning motion.

Figure 11.15 A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on the wires

closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the loop has a net

torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no current flows through the

loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part (a). By the time the loop flips over,

current flows through the wires again but now in the opposite direction, and the process repeats as in part (a). This causes continual

rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces
and torques on the loop. Figure 11.16 shows a rectangular loop of wire that carries a current I and has sides of
lengths a and b. The loop is in a uniform magnetic field: The magnetic force on a straight current-
carrying wire of length l is given by To find the net force on the loop, we have to apply this equation to
each of the four sides. The force on side 1 is

11.14
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where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction
to that of side 1, so

The currents in sides 2 and 4 are perpendicular to and the forces on these sides are

We can now find the net force on the loop:

Although this result has been obtained for a rectangular loop, it is far more general and holds for
current-carrying loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform
magnetic field.

Figure 11.16 (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side view of

the coil.

To find the net torque on the current loop shown in Figure 11.16, we first consider and Since they have
the same line of action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-
Axis Rotation). Thus, if there is any torque on the loop, it must be furnished by and Let’s calculate the
torques around the axis that passes through point O of Figure 11.16 (a side view of the coil) and is
perpendicular to the plane of the page. The point O is a distance x from side 2 and a distance from side
4 of the loop. The moment arms of and are and respectively, so the net torque on the
loop is

This simplifies to

where is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane
of the current loop. Consequently, the loop experiences the same torque from the magnetic field about any axis
in the plane of the loop and parallel to the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic
dipole moment Actually, the magnetic dipole moment is a vector that is defined as
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where is a unit vector directed perpendicular to the plane of the loop (see Figure 11.16). The direction of is
obtained with the RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop,
then your thumb points along If the loop contains N turns of wire, then its magnetic dipole moment is given
by

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be
written simply as

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a
magnetic dipole is

EXAMPLE 11.7

Forces and Torques on Current-Carrying Loops
A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic
dipole moment? (b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T,
what is the magnitude of the torque it experiences and what is its potential energy?

Strategy
The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated
from the area of the circle. The torque on the loop and potential energy are calculated from identifying the
magnetic moment, magnetic field, and angle oriented in the field.

Solution

a. The magnetic moment μ is calculated by the current times the area of the loop or

b. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and
the angle between these two vectors. The calculations of these quantities are:

Significance
The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning
the magnetic moment with the magnetic field is the functionality of devices like magnetic motors, whereby
switching the external magnetic field results in a constant spinning of the loop as it tries to align with the field
to minimize its potential energy.

CHECK YOUR UNDERSTANDING 11.4

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field?
(b) A maximum energy of the dipole?
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that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The
particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.

Figure 11.7 A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the

paper (represented by the small ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in

direction but not magnitude. The result is uniform circular motion. (Note that because the charge is negative, the force is opposite in

direction to the prediction of the right-hand rule.)

In this situation, the magnetic force supplies the centripetal force Noting that the velocity is
perpendicular to the magnetic field, the magnitude of the magnetic force is reduced to Because the
magnetic force F supplies the centripetal force we have

Solving for r yields

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q, moving at a speed
v that is perpendicular to a magnetic field of strength B. The time for the charged particle to go around the
circular path is defined as the period, which is the same as the distance traveled (the circumference) divided
by the speed. Based on this and Equation 11.4, we can derive the period of motion as

If the velocity is not perpendicular to the magnetic field, then we can compare each component of the velocity
separately with the magnetic field. The component of the velocity perpendicular to the magnetic field
produces a magnetic force perpendicular to both this velocity and the field:

where is the angle between v and B. The component parallel to the magnetic field creates constant motion
along the same direction as the magnetic field, also shown in Equation 11.7. The parallel motion determines
the pitch p of the helix, which is the distance between adjacent turns. This distance equals the parallel
component of the velocity times the period:

11.4

11.5

11.6

11.7

11.3 • Motion of a Charged Particle in a Magnetic Field 487



The result is a helical motion, as shown in the following figure.

Figure 11.8 A charged particle moving with a velocity not in the same direction as the magnetic field. The velocity component

perpendicular to the magnetic field creates circular motion, whereas the component of the velocity parallel to the field moves the particle

along a straight line. The pitch is the horizontal distance between two consecutive circles. The resulting motion is helical.

While the charged particle travels in a helical path, it may enter a region where the magnetic field is not
uniform. In particular, suppose a particle travels from a region of strong magnetic field to a region of weaker
field, then back to a region of stronger field. The particle may reflect back before entering the stronger
magnetic field region. This is similar to a wave on a string traveling from a very light, thin string to a hard wall
and reflecting backward. If the reflection happens at both ends, the particle is trapped in a so-called magnetic
bottle.

Trapped particles in magnetic fields are found in the Van Allen radiation belts around Earth, which are part of
Earth’s magnetic field. These belts were discovered by James Van Allen while trying to measure the flux of
cosmic rays on Earth (high-energy particles that come from outside the solar system) to see whether this was
similar to the flux measured on Earth. Van Allen found that due to the contribution of particles trapped in
Earth’s magnetic field, the flux was much higher on Earth than in outer space. Aurorae, like the famous aurora
borealis (northern lights) in the Northern Hemisphere (Figure 11.9), are beautiful displays of light emitted as
ions recombine with electrons entering the atmosphere as they spiral along magnetic field lines. (The ions are
primarily oxygen and nitrogen atoms that are initially ionized by collisions with energetic particles in Earth’s
atmosphere.) Aurorae have also been observed on other planets, such as Jupiter and Saturn.

11.8
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Figure 11.9 (a) The Van Allen radiation belts around Earth trap ions produced by cosmic rays striking Earth’s atmosphere. (b) The

magnificent spectacle of the aurora borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force Base,

Alaska. Shaped by Earth’s magnetic field, this light is produced by glowing molecules and ions of oxygen and nitrogen. (credit b:

modification of work by USAF Senior Airman Joshua Strang)

EXAMPLE 11.2

Beam Deflector
A research group is investigating short-lived radioactive isotopes. They need to design a way to transport
alpha-particles (helium nuclei) from where they are made to a place where they will collide with another
material to form an isotope. The beam of alpha-particles bends
through a 90-degree region with a uniform magnetic field of 0.050 T (Figure 11.10). (a) In what direction
should the magnetic field be applied? (b) How much time does it take the alpha-particles to traverse the
uniform magnetic field region?

Figure 11.10 Top view of the beam deflector setup.

Strategy

a. The direction of the magnetic field is shown by the RHR-1. Your fingers point in the direction of v, and your
thumb needs to point in the direction of the force, to the left. Therefore, since the alpha-particles are
positively charged, the magnetic field must point down.
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b. The period of the alpha-particle going around the circle is

Because the particle is only going around a quarter of a circle, we can take 0.25 times the period to find the
time it takes to go around this path.

Solution

a. Let’s start by focusing on the alpha-particle entering the field near the bottom of the picture. First, point
your thumb up the page. In order for your palm to open to the left where the centripetal force (and hence
the magnetic force) points, your fingers need to change orientation until they point into the page. This is
the direction of the applied magnetic field.

b. The period of the charged particle going around a circle is calculated by using the given mass, charge, and
magnetic field in the problem. This works out to be

However, for the given problem, the alpha-particle goes around a quarter of the circle, so the time it takes
would be

Significance
This time may be quick enough to get to the material we would like to bombard, depending on how short-lived
the radioactive isotope is and continues to emit alpha-particles. If we could increase the magnetic field applied
in the region, this would shorten the time even more. The path the particles need to take could be shortened,
but this may not be economical given the experimental setup.

CHECK YOUR UNDERSTANDING 11.2

A uniform magnetic field of magnitude 1.5 T is directed horizontally from west to east. (a) What is the magnetic
force on a proton at the instant when it is moving vertically downward in the field with a speed of
(b) Compare this force with the weight w of a proton.

EXAMPLE 11.3

Helical Motion in a Magnetic Field
A proton enters a uniform magnetic field of with a speed of At what angle must the
magnetic field be from the velocity so that the pitch of the resulting helical motion is equal to the radius of the
helix?

Strategy
The pitch of the motion relates to the parallel velocity times the period of the circular motion, whereas the
radius relates to the perpendicular velocity component. After setting the radius and the pitch equal to each
other, solve for the angle between the magnetic field and velocity or

Solution
The pitch is given by Equation 11.8, the period is given by Equation 11.6, and the radius of circular motion is
given by Equation 11.5. Note that the velocity in the radius equation is related to only the perpendicular
velocity, which is where the circular motion occurs. Therefore, we substitute the sine component of the overall
velocity into the radius equation to equate the pitch and radius:

11.9
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Significance
If this angle were only parallel velocity would occur and the helix would not form, because there would be
no circular motion in the perpendicular plane. If this angle were only circular motion would occur and
there would be no movement of the circles perpendicular to the motion. That is what creates the helical
motion.

11.4 Magnetic Force on a Current-Carrying Conductor
Learning Objectives
By the end of this section, you will be able to:

• Determine the direction in which a current-carrying wire experiences a force in an external magnetic field
• Calculate the force on a current-carrying wire in an external magnetic field

Moving charges experience a force in a magnetic field. If these moving charges are in a wire—that is, if the wire
is carrying a current—the wire should also experience a force. However, before we discuss the force exerted on
a current by a magnetic field, we first examine the magnetic field generated by an electric current. We are
studying two separate effects here that interact closely: A current-carrying wire generates a magnetic field and
the magnetic field exerts a force on the current-carrying wire.

Magnetic Fields Produced by Electrical Currents
When discussing historical discoveries in magnetism, we mentioned Oersted’s finding that a wire carrying an
electrical current caused a nearby compass to deflect. A connection was established that electrical currents
produce magnetic fields. (This connection between electricity and magnetism is discussed in more detail in
Sources of Magnetic Fields.)

The compass needle near the wire experiences a force that aligns the needle tangent to a circle around the
wire. Therefore, a current-carrying wire produces circular loops of magnetic field. To determine the direction
of the magnetic field generated from a wire, we use a second right-hand rule. In RHR-2, your thumb points in
the direction of the current while your fingers wrap around the wire, pointing in the direction of the magnetic
field produced (Figure 11.11). If the magnetic field were coming at you or out of the page, we represent this
with a dot. If the magnetic field were going into the page, we represent this with an These symbols come
from considering a vector arrow: An arrow pointed toward you, from your perspective, would look like a dot or
the tip of an arrow. An arrow pointed away from you, from your perspective, would look like a cross or an A
composite sketch of the magnetic circles is shown in Figure 11.11, where the field strength is shown to
decrease as you get farther from the wire by loops that are farther separated.
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Figure 11.11 (a) When the wire is in the plane of the paper, the field is perpendicular to the paper. Note the symbols used for the field

pointing inward (like the tail of an arrow) and the field pointing outward (like the tip of an arrow). (b) A long and straight wire creates a field

with magnetic field lines forming circular loops.

Calculating the Magnetic Force
Electric current is an ordered movement of charge. A current-carrying wire in a magnetic field must therefore
experience a force due to the field. To investigate this force, let’s consider the infinitesimal section of wire as
shown in Figure 11.12. The length and cross-sectional area of the section are dl and A, respectively, so its
volume is The wire is formed from material that contains n charge carriers per unit volume, so the
number of charge carriers in the section is If the charge carriers move with drift velocity the
current I in the wire is (from Current and Resistance)

The magnetic force on any single charge carrier is so the total magnetic force on the
charge carriers in the section of wire is

We can define dl to be a vector of length dl pointing along which allows us to rewrite this equation as

or

This is the magnetic force on the section of wire. Note that it is actually the net force exerted by the field on the
charge carriers themselves. The direction of this force is given by RHR-1, where you point your fingers in the
direction of the current and curl them toward the field. Your thumb then points in the direction of the force.
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Figure 11.12 An infinitesimal section of current-carrying wire in a magnetic field.

To determine the magnetic force on a wire of arbitrary length and shape, we must integrate Equation 11.12
over the entire wire. If the wire section happens to be straight and B is uniform, the equation differentials
become absolute quantities, giving us

This is the force on a straight, current-carrying wire in a uniform magnetic field.

EXAMPLE 11.4

Balancing the Gravitational and Magnetic Forces on a Current-Carrying Wire
A wire of length 50 cm and mass 10 g is suspended in a horizontal plane by a pair of flexible leads (Figure
11.13). The wire is then subjected to a constant magnetic field of magnitude 0.50 T, which is directed as shown.
What are the magnitude and direction of the current in the wire needed to remove the tension in the
supporting leads?

Figure 11.13 (a) A wire suspended in a magnetic field. (b) The free-body diagram for the wire.

Strategy
From the free-body diagram in the figure, the tensions in the supporting leads go to zero when the
gravitational and magnetic forces balance each other. Using the RHR-1, we find that the magnetic force points
up. We can then determine the current I by equating the two forces.

11.13
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Solution
Equate the two forces of weight and magnetic force on the wire:

Thus,

Significance
This large magnetic field creates a significant force on a length of wire to counteract the weight of the wire.

EXAMPLE 11.5

Calculating Magnetic Force on a Current-Carrying Wire
A long, rigid wire lying along the y-axis carries a 5.0-A current flowing in the positive y-direction. (a) If a
constant magnetic field of magnitude 0.30 T is directed along the positive x-axis, what is the magnetic force
per unit length on the wire? (b) If a constant magnetic field of 0.30 T is directed 30 degrees from the +x-axis
towards the +y-axis, what is the magnetic force per unit length on the wire?

Strategy

The magnetic force on a current-carrying wire in a magnetic field is given by For part a, since
the current and magnetic field are perpendicular in this problem, we can simplify the formula to give us the
magnitude and find the direction through the RHR-1. The angle θ is 90 degrees, which means Also,
the length can be divided over to the left-hand side to find the force per unit length. For part b, the current
times length is written in unit vector notation, as well as the magnetic field. After the cross product is taken,
the directionality is evident by the resulting unit vector.

Solution

a. We start with the general formula for the magnetic force on a wire. We are looking for the force per unit
length, so we divide by the length to bring it to the left-hand side. We also set The solution
therefore is

Directionality: Point your fingers in the positive y-direction and curl your fingers in the positive
x-direction. Your thumb will point in the direction. Therefore, with directionality, the solution is

b. The current times length and the magnetic field are written in unit vector notation. Then, we take the cross
product to find the force:

Significance
This large magnetic field creates a significant force on a small length of wire. As the angle of the magnetic field
becomes more closely aligned to the current in the wire, there is less of a force on it, as seen from comparing
parts a and b.
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CHECK YOUR UNDERSTANDING 11.3

A straight, flexible length of copper wire is immersed in a magnetic field that is directed into the page. (a) If the
wire’s current runs in the +x-direction, which way will the wire bend? (b) Which way will the wire bend if the
current runs in the –x-direction?

EXAMPLE 11.6

Force on a Circular Wire
A circular current loop of radius R carrying a current I is placed in the xy-plane. A constant uniform magnetic
field cuts through the loop parallel to the y-axis (Figure 11.14). Find the magnetic force on the upper half of the
loop, the lower half of the loop, and the total force on the loop.

Figure 11.14 A loop of wire carrying a current in a magnetic field.

Strategy
The magnetic force on the upper loop should be written in terms of the differential force acting on each
segment of the loop. If we integrate over each differential piece, we solve for the overall force on that section of
the loop. The force on the lower loop is found in a similar manner, and the total force is the addition of these
two forces.

Solution
A differential force on an arbitrary piece of wire located on the upper ring is:

where is the angle between the magnetic field direction (+y) and the segment of wire. A differential segment
is located at the same radius, so using an arc-length formula, we have:

In order to find the force on a segment, we integrate over the upper half of the circle, from 0 to This results
in:

The lower half of the loop is integrated from to zero, giving us:

The net force is the sum of these forces, which is zero.

11.4 • Magnetic Force on a Current-Carrying Conductor 495



Significance
The total force on any closed loop in a uniform magnetic field is zero. Even though each piece of the loop has a
force acting on it, the net force on the system is zero. (Note that there is a net torque on the loop, which we
consider in the next section.)

11.5 Force and Torque on a Current Loop
Learning Objectives
By the end of this section, you will be able to:

• Evaluate the net force on a current loop in an external magnetic field
• Evaluate the net torque on a current loop in an external magnetic field
• Define the magnetic dipole moment of a current loop

Motors are the most common application of magnetic force on current-carrying wires. Motors contain loops of
wire in a magnetic field. When current is passed through the loops, the magnetic field exerts torque on the
loops, which rotates a shaft. Electrical energy is converted into mechanical work in the process. Once the loop’s
surface area is aligned with the magnetic field, the direction of current is reversed, so there is a continual
torque on the loop (Figure 11.15). This reversal of the current is done with commutators and brushes. The
commutator is set to reverse the current flow at set points to keep continual motion in the motor. A basic
commutator has three contact areas to avoid and dead spots where the loop would have zero instantaneous
torque at that point. The brushes press against the commutator, creating electrical contact between parts of
the commutator during the spinning motion.

Figure 11.15 A simplified version of a dc electric motor. (a) The rectangular wire loop is placed in a magnetic field. The forces on the wires

closest to the magnetic poles (N and S) are opposite in direction as determined by the right-hand rule-1. Therefore, the loop has a net

torque and rotates to the position shown in (b). (b) The brushes now touch the commutator segments so that no current flows through the

loop. No torque acts on the loop, but the loop continues to spin from the initial velocity given to it in part (a). By the time the loop flips over,

current flows through the wires again but now in the opposite direction, and the process repeats as in part (a). This causes continual

rotation of the loop.

In a uniform magnetic field, a current-carrying loop of wire, such as a loop in a motor, experiences both forces
and torques on the loop. Figure 11.16 shows a rectangular loop of wire that carries a current I and has sides of
lengths a and b. The loop is in a uniform magnetic field: The magnetic force on a straight current-
carrying wire of length l is given by To find the net force on the loop, we have to apply this equation to
each of the four sides. The force on side 1 is

11.14
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where the direction has been determined with the RHR-1. The current in side 3 flows in the opposite direction
to that of side 1, so

The currents in sides 2 and 4 are perpendicular to and the forces on these sides are

We can now find the net force on the loop:

Although this result has been obtained for a rectangular loop, it is far more general and holds for
current-carrying loops of arbitrary shapes; that is, there is no net force on a current loop in a uniform
magnetic field.

Figure 11.16 (a) A rectangular current loop in a uniform magnetic field is subjected to a net torque but not a net force. (b) A side view of

the coil.

To find the net torque on the current loop shown in Figure 11.16, we first consider and Since they have
the same line of action and are equal and opposite, the sum of their torques about any axis is zero (see Fixed-
Axis Rotation). Thus, if there is any torque on the loop, it must be furnished by and Let’s calculate the
torques around the axis that passes through point O of Figure 11.16 (a side view of the coil) and is
perpendicular to the plane of the page. The point O is a distance x from side 2 and a distance from side
4 of the loop. The moment arms of and are and respectively, so the net torque on the
loop is

This simplifies to

where is the area of the loop.

Notice that this torque is independent of x; it is therefore independent of where point O is located in the plane
of the current loop. Consequently, the loop experiences the same torque from the magnetic field about any axis
in the plane of the loop and parallel to the x-axis.

A closed-current loop is commonly referred to as a magnetic dipole and the term IA is known as its magnetic
dipole moment Actually, the magnetic dipole moment is a vector that is defined as
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where is a unit vector directed perpendicular to the plane of the loop (see Figure 11.16). The direction of is
obtained with the RHR-2—if you curl the fingers of your right hand in the direction of current flow in the loop,
then your thumb points along If the loop contains N turns of wire, then its magnetic dipole moment is given
by

In terms of the magnetic dipole moment, the torque on a current loop due to a uniform magnetic field can be
written simply as

This equation holds for a current loop in a two-dimensional plane of arbitrary shape.

Using a calculation analogous to that found in Capacitance for an electric dipole, the potential energy of a
magnetic dipole is

EXAMPLE 11.7

Forces and Torques on Current-Carrying Loops
A circular current loop of radius 2.0 cm carries a current of 2.0 mA. (a) What is the magnitude of its magnetic
dipole moment? (b) If the dipole is oriented at 30 degrees to a uniform magnetic field of magnitude 0.50 T,
what is the magnitude of the torque it experiences and what is its potential energy?

Strategy
The dipole moment is defined by the current times the area of the loop. The area of the loop can be calculated
from the area of the circle. The torque on the loop and potential energy are calculated from identifying the
magnetic moment, magnetic field, and angle oriented in the field.

Solution

a. The magnetic moment μ is calculated by the current times the area of the loop or

b. The torque and potential energy are calculated by identifying the magnetic moment, magnetic field, and
the angle between these two vectors. The calculations of these quantities are:

Significance
The concept of magnetic moment at the atomic level is discussed in the next chapter. The concept of aligning
the magnetic moment with the magnetic field is the functionality of devices like magnetic motors, whereby
switching the external magnetic field results in a constant spinning of the loop as it tries to align with the field
to minimize its potential energy.

CHECK YOUR UNDERSTANDING 11.4

In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field?
(b) A maximum energy of the dipole?

11.21
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11.6 The Hall Effect
Learning Objectives
By the end of this section, you will be able to:

• Explain a scenario where the magnetic and electric fields are crossed and their forces balance each other as
a charged particle moves through a velocity selector

• Compare how charge carriers move in a conductive material and explain how this relates to the Hall effect

In 1879, E.H. Hall devised an experiment that can be used to identify the sign of the predominant charge
carriers in a conducting material. From a historical perspective, this experiment was the first to demonstrate
that the charge carriers in most metals are negative.

INTERACTIVE

Visit this website (https://openstax.org/l/21halleffect) to find more information about the Hall effect.

We investigate the Hall effect by studying the motion of the free electrons along a metallic strip of width l in a
constant magnetic field (Figure 11.17). The electrons are moving from left to right, so the magnetic force they
experience pushes them to the bottom edge of the strip. This leaves an excess of positive charge at the top edge
of the strip, resulting in an electric field E directed from top to bottom. The charge concentration at both edges
builds up until the electric force on the electrons in one direction is balanced by the magnetic force on them in
the opposite direction. Equilibrium is reached when:

where e is the magnitude of the electron charge, is the drift speed of the electrons, and E is the magnitude of
the electric field created by the separated charge. Solving this for the drift speed results in

Figure 11.17 In the Hall effect, a potential difference between the top and bottom edges of the metal strip is produced when moving

charge carriers are deflected by the magnetic field. (a) Hall effect for negative charge carriers; (b) Hall effect for positive charge carriers.

A scenario where the electric and magnetic fields are perpendicular to one another is called a crossed-field
situation. If these fields produce equal and opposite forces on a charged particle with the velocity that equates
the forces, these particles are able to pass through an apparatus, called a velocity selector, undeflected. This
velocity is represented in Equation 11.26. Any other velocity of a charged particle sent into the same fields
would be deflected by the magnetic force or electric force.

Going back to the Hall effect, if the current in the strip is I, then from Current and Resistance, we know that

where n is the number of charge carriers per volume and A is the cross-sectional area of the strip. Combining
the equations for and I results in

11.24
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The field E is related to the potential difference V between the edges of the strip by

The quantity V is called the Hall potential and can be measured with a voltmeter. Finally, combining the
equations for I and E gives us

where the upper edge of the strip in Figure 11.17 is positive with respect to the lower edge.

We can also combine Equation 11.24 and Equation 11.28 to get an expression for the Hall voltage in terms of
the magnetic field:

What if the charge carriers are positive, as in Figure 11.17? For the same current I, the magnitude of V is still
given by Equation 11.29. However, the upper edge is now negative with respect to the lower edge. Therefore, by
simply measuring the sign of V, we can determine the sign of the majority charge carriers in a metal.

Hall potential measurements show that electrons are the dominant charge carriers in most metals. However,
Hall potentials indicate that for a few metals, such as tungsten, beryllium, and many semiconductors, the
majority of charge carriers are positive. It turns out that conduction by positive charge is caused by the
migration of missing electron sites (called holes) on ions. Conduction by holes is studied later in Condensed
Matter Physics.

The Hall effect can be used to measure magnetic fields. If a material with a known density of charge carriers n
is placed in a magnetic field and V is measured, then the field can be determined from Equation 11.29. In
research laboratories where the fields of electromagnets used for precise measurements have to be extremely
steady, a “Hall probe” is commonly used as part of an electronic circuit that regulates the field.

EXAMPLE 11.8

Velocity Selector
An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and

respectively. (a) What must the velocity of the electron beam be to traverse the crossed fields
undeflected? If the electric field is turned off, (b) what is the acceleration of the electron beam and (c) what is
the radius of the circular motion that results?

Strategy
The electron beam is not deflected by either of the magnetic or electric fields if these forces are balanced.
Based on these balanced forces, we calculate the velocity of the beam. Without the electric field, only the
magnetic force is used in Newton’s second law to find the acceleration. Lastly, the radius of the path is based on
the resulting circular motion from the magnetic force.

Solution

a. The velocity of the unperturbed beam of electrons with crossed fields is calculated by Equation 11.25:

b. The acceleration is calculated from the net force from the magnetic field, equal to mass times acceleration.
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CHAPTER REVIEW
Key Terms
cosmic rays comprised of particles that originate

mainly from outside the solar system and reach
Earth

cyclotron device used to accelerate charged
particles to large kinetic energies

dees large metal containers used in cyclotrons that
serve contain a stream of charged particles as
their speed is increased

gauss G, unit of the magnetic field strength;

Hall effect creation of voltage across a current-
carrying conductor by a magnetic field

helical motion superposition of circular motion
with a straight-line motion that is followed by a
charged particle moving in a region of magnetic
field at an angle to the field

magnetic dipole closed-current loop
magnetic dipole moment term IA of the magnetic

dipole, also called
magnetic field lines continuous curves that show

the direction of a magnetic field; these lines point
in the same direction as a compass points, toward
the magnetic south pole of a bar magnet

magnetic force force applied to a charged particle
moving through a magnetic field

mass spectrometer device that separates ions
according to their charge-to-mass ratios

motor (dc) loop of wire in a magnetic field; when

current is passed through the loops, the magnetic
field exerts torque on the loops, which rotates a
shaft; electrical energy is converted into
mechanical work in the process

north magnetic pole currently where a compass
points to north, near the geographic North Pole;
this is the effective south pole of a bar magnet but
has flipped between the effective north and south
poles of a bar magnet multiple times over the age
of Earth

right-hand rule-1 using your right hand to
determine the direction of either the magnetic
force, velocity of a charged particle, or magnetic
field

south magnetic pole currently where a compass
points to the south, near the geographic South
Pole; this is the effective north pole of a bar
magnet but has flipped just like the north
magnetic pole

tesla SI unit for magnetic field: 1 T = 1 N/A-m
velocity selector apparatus where the crossed

electric and magnetic fields produce equal and
opposite forces on a charged particle moving with
a specific velocity; this particle moves through
the velocity selector not affected by either field
while particles moving with different velocities
are deflected by the apparatus

Key Equations

Force on a charge in a magnetic field

Magnitude of magnetic force

Radius of a particle’s path in a magnetic field

Period of a particle’s motion in a magnetic field

Force on a current-carrying wire in a uniform magnetic field

Magnetic dipole moment

Torque on a current loop

Energy of a magnetic dipole
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Drift velocity in crossed electric and magnetic fields

Hall potential

Hall potential in terms of drift velocity

Charge-to-mass ratio in a mass spectrometer

Maximum speed of a particle in a cyclotron

Summary
11.1 Magnetism and Its Historical
Discoveries

• Magnets have two types of magnetic poles,
called the north magnetic pole and the south
magnetic pole. North magnetic poles are those
that are attracted toward Earth’s geographic
North Pole.

• Like poles repel and unlike poles attract.
• Discoveries of how magnets respond to currents

by Oersted and others created a framework that
led to the invention of modern electronic
devices, electric motors, and magnetic imaging
technology.

11.2 Magnetic Fields and Lines

• Charges moving across a magnetic field
experience a force determined by
The force is perpendicular to the plane formed
by and

• The direction of the force on a moving charge is
given by the right hand rule 1 (RHR-1): Sweep
your fingers in a velocity, magnetic field plane.
Start by pointing them in the direction of
velocity and sweep towards the magnetic field.
Your thumb points in the direction of the
magnetic force for positive charges.

• Magnetic fields can be pictorially represented by
magnetic field lines, which have the following
properties:

1. The field is tangent to the magnetic field line.
2. Field strength is proportional to the line

density.
3. Field lines cannot cross.
4. Field lines form continuous, closed loops.

• Magnetic poles always occur in pairs of north
and south—it is not possible to isolate north and
south poles.

11.3 Motion of a Charged Particle in a
Magnetic Field

• A magnetic force can supply centripetal force
and cause a charged particle to move in a
circular path of radius

• The period of circular motion for a charged
particle moving in a magnetic field
perpendicular to the plane of motion is

• Helical motion results if the velocity of the
charged particle has a component parallel to the
magnetic field as well as a component
perpendicular to the magnetic field.

11.4 Magnetic Force on a Current-Carrying
Conductor

• An electrical current produces a magnetic field
around the wire.

• The directionality of the magnetic field
produced is determined by the right hand
rule-2, where your thumb points in the direction
of the current and your fingers wrap around the
wire in the direction of the magnetic field.

• The magnetic force on current-carrying
conductors is given by where I is
the current and l is the length of a wire in a
uniform magnetic field B.

11.5 Force and Torque on a Current Loop

• The net force on a current-carrying loop of any
plane shape in a uniform magnetic field is zero.

• The net torque τ on a current-carrying loop of
any shape in a uniform magnetic field is
calculated using where is the
magnetic dipole moment and is the magnetic
field strength.

• The magnetic dipole moment is the product of
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the number of turns of wire N, the current in the
loop I, and the area of the loop A or

11.6 The Hall Effect

• Perpendicular electric and magnetic fields exert
equal and opposite forces for a specific velocity
of entering particles, thereby acting as a velocity
selector. The velocity that passes through
undeflected is calculated by

• The Hall effect can be used to measure the sign
of the majority of charge carriers for metals. It

can also be used to measure a magnetic field.

11.7 Applications of Magnetic Forces and
Fields

• A mass spectrometer is a device that separates
ions according to their charge-to-mass ratios by
first sending them through a velocity selector,
then a uniform magnetic field.

• Cyclotrons are used to accelerate charged
particles to large kinetic energies through
applied electric and magnetic fields.

Conceptual Questions
11.2 Magnetic Fields and Lines

1. Discuss the similarities and differences between
the electrical force on a charge and the magnetic
force on a charge.

2. (a) Is it possible for the magnetic force on a
charge moving in a magnetic field to be zero? (b)
Is it possible for the electric force on a charge
moving in an electric field to be zero? (c) Is it
possible for the resultant of the electric and
magnetic forces on a charge moving
simultaneously through both fields to be zero?

11.3 Motion of a Charged Particle in a
Magnetic Field

3. At a given instant, an electron and a proton are
moving with the same velocity in a constant
magnetic field. Compare the magnetic forces on
these particles. Compare their accelerations.

4. Does increasing the magnitude of a uniform
magnetic field through which a charge is
traveling necessarily mean increasing the
magnetic force on the charge? Does changing the
direction of the field necessarily mean a change
in the force on the charge?

5. An electron passes through a magnetic field
without being deflected. What do you conclude
about the magnetic field?

6. If a charged particle moves in a straight line, can
you conclude that there is no magnetic field
present?

7. How could you determine which pole of an

electromagnet is north and which pole is south?

11.4 Magnetic Force on a Current-Carrying
Conductor

8. Describe the error that results from accidently
using your left rather than your right hand when
determining the direction of a magnetic force.

9. Considering the magnetic force law, are the
velocity and magnetic field always
perpendicular? Are the force and velocity always
perpendicular? What about the force and
magnetic field?

10. Why can a nearby magnet distort a cathode ray
tube television picture?

11. A magnetic field exerts a force on the moving
electrons in a current carrying wire. What
exerts the force on a wire?

12. There are regions where the magnetic field of
earth is almost perpendicular to the surface of
Earth. What difficulty does this cause in the use
of a compass?

11.6 The Hall Effect

13. Hall potentials are much larger for poor
conductors than for good conductors. Why?

11.7 Applications of Magnetic Forces and
Fields

14. Describe the primary function of the electric
field and the magnetic field in a cyclotron.

Problems
11.2 Magnetic Fields and Lines

15. What is the direction of the magnetic force on a
positive charge that moves as shown in each of
the six cases?
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