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Capacitors are important components of electrical circuits in many electronic devices,
including pacemakers, cell phones, and computers. In this chapter, we study their properties, and, over the
next few chapters, we examine their function in combination with other circuit elements. By themselves,
capacitors are often used to store electrical energy and release it when needed; with other circuit components,
capacitors often act as part of a filter that allows some electrical signals to pass while blocking others. You can
see why capacitors are considered one of the fundamental components of electrical circuits.

Figure 8.1 The tree-like branch patterns in this clear Plexiglas® block are known as a Lichtenberg figure, named for
the German physicist Georg Christof Lichtenberg (1742–1799), who was the first to study these patterns. The
“branches” are created by the dielectric breakdown produced by a strong electric field. (credit: modification of work
by Bert Hickman)
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8.1 Capacitors and Capacitance
Learning Objectives
By the end of this section, you will be able to:

• Explain the concepts of a capacitor and its capacitance
• Describe how to evaluate the capacitance of a system of conductors

A capacitor is a device used to store electrical charge and electrical energy. Capacitors are generally with two
electrical conductors separated by a distance. (Note that such electrical conductors are sometimes referred to
as “electrodes,” but more correctly, they are “capacitor plates.”) The space between capacitors may simply be a
vacuum, and, in that case, a capacitor is then known as a “vacuum capacitor.” However, the space is usually
filled with an insulating material known as a dielectric. (You will learn more about dielectrics in the sections
on dielectrics later in this chapter.) The amount of storage in a capacitor is determined by a property called
capacitance, which you will learn more about a bit later in this section.

Capacitors have applications ranging from filtering static from radio reception to energy storage in heart
defibrillators. Typically, commercial capacitors have two conducting parts close to one another but not
touching, such as those in Figure 8.2. Most of the time, a dielectric is used between the two plates. When
battery terminals are connected to an initially uncharged capacitor, the battery potential moves a small
amount of charge of magnitude Q from the positive plate to the negative plate. The capacitor remains neutral
overall, but with charges and residing on opposite plates.

Figure 8.2 Both capacitors shown here were initially uncharged before being connected to a battery. They now have charges of and

(respectively) on their plates. (a) A parallel-plate capacitor consists of two plates of opposite charge with area A separated by distance

d. (b) A rolled capacitor has a dielectric material between its two conducting sheets (plates).

A system composed of two identical parallel-conducting plates separated by a distance is called a parallel-
plate capacitor (Figure 8.3). The magnitude of the electrical field in the space between the parallel plates is

, where denotes the surface charge density on one plate (recall that is the charge Q per the surface
area A). Thus, the magnitude of the field is directly proportional to Q.
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Figure 8.3 The charge separation in a capacitor shows that the charges remain on the surfaces of the capacitor plates. Electrical field

lines in a parallel-plate capacitor begin with positive charges and end with negative charges. The magnitude of the electrical field in the

space between the plates is in direct proportion to the amount of charge on the capacitor.

Capacitors with different physical characteristics (such as shape and size of their plates) store different
amounts of charge for the same applied voltage V across their plates. The capacitance C of a capacitor is
defined as the ratio of the maximum charge Q that can be stored in a capacitor to the applied voltage V across
its plates. In other words, capacitance is the largest amount of charge per volt that can be stored on the device:

The SI unit of capacitance is the farad (F), named after Michael Faraday (1791–1867). Since capacitance is the
charge per unit voltage, one farad is one coulomb per one volt, or

By definition, a 1.0-F capacitor is able to store 1.0 C of charge (a very large amount of charge) when the
potential difference between its plates is only 1.0 V. One farad is therefore a very large capacitance. Typical
capacitance values range from picofarads to millifarads , which also
includes microfarads ( ). Capacitors can be produced in various shapes and sizes (Figure 8.4).

8.1
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Figure 8.4 These are some typical capacitors used in electronic devices. A capacitor’s size is not necessarily related to its capacitance

value. (credit: Windell Oskay)

Calculation of Capacitance
We can calculate the capacitance of a pair of conductors with the standard approach that follows.

PROBLEM-SOLVING STRATEGY

Calculating Capacitance
1. Assume that the capacitor has a charge Q.
2. Determine the electrical field between the conductors. If symmetry is present in the arrangement of

conductors, you may be able to use Gauss’s law for this calculation.
3. Find the potential difference between the conductors from

where the path of integration leads from one conductor to the other. The magnitude of the potential
difference is then .

4. With V known, obtain the capacitance directly from Equation 8.1.

To show how this procedure works, we now calculate the capacitances of parallel-plate, spherical, and
cylindrical capacitors. In all cases, we assume vacuum capacitors (empty capacitors) with no dielectric
substance in the space between conductors.

Parallel-Plate Capacitor
The parallel-plate capacitor (Figure 8.5) has two identical conducting plates, each having a surface area A,
separated by a distance d. When a voltage V is applied to the capacitor, it stores a charge Q, as shown. We can
see how its capacitance may depend on A and d by considering characteristics of the Coulomb force. We know
that force between the charges increases with charge values and decreases with the distance between them.
We should expect that the bigger the plates are, the more charge they can store. Thus, C should be greater for a
larger value of A. Similarly, the closer the plates are together, the greater the attraction of the opposite charges
on them. Therefore, C should be greater for a smaller d.

8.2
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Figure 8.5 In a parallel-plate capacitor with plates separated by a distance d, each plate has the same surface area A.

We define the surface charge density on the plates as

We know from previous chapters that when d is small, the electrical field between the plates is fairly uniform
(ignoring edge effects) and that its magnitude is given by

where the constant is the permittivity of free space, The SI unit of F/m is
equivalent to Since the electrical field between the plates is uniform, the potential difference
between the plates is

Therefore Equation 8.1 gives the capacitance of a parallel-plate capacitor as

Notice from this equation that capacitance is a function only of the geometry and what material fills the space
between the plates (in this case, vacuum) of this capacitor. In fact, this is true not only for a parallel-plate
capacitor, but for all capacitors: The capacitance is independent of Q or V. If the charge changes, the potential
changes correspondingly so that Q/V remains constant.

EXAMPLE 8.1

Capacitance and Charge Stored in a Parallel-Plate Capacitor
(a) What is the capacitance of an empty parallel-plate capacitor with metal plates that each have an area of

, separated by 1.00 mm? (b) How much charge is stored in this capacitor if a voltage of is

8.3
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applied to it?

Strategy
Finding the capacitance C is a straightforward application of Equation 8.3. Once we find C, we can find the
charge stored by using Equation 8.1.

Solution

a. Entering the given values into Equation 8.3 yields

This small capacitance value indicates how difficult it is to make a device with a large capacitance.
b. Inverting Equation 8.1 and entering the known values into this equation gives

Significance
This charge is only slightly greater than those found in typical static electricity applications. Since air breaks
down (becomes conductive) at an electrical field strength of about 3.0 MV/m, no more charge can be stored on
this capacitor by increasing the voltage.

EXAMPLE 8.2

A 1-F Parallel-Plate Capacitor
Suppose you wish to construct a parallel-plate capacitor with a capacitance of 1.0 F. What area must you use
for each plate if the plates are separated by 1.0 mm?

Solution
Rearranging Equation 8.3, we obtain

Each square plate would have to be 10 km across. It used to be a common prank to ask a student to go to the
laboratory stockroom and request a 1-F parallel-plate capacitor, until stockroom attendants got tired of the
joke.

CHECK YOUR UNDERSTANDING 8.1

The capacitance of a parallel-plate capacitor is 2.0 pF. If the area of each plate is , what is the plate
separation?

CHECK YOUR UNDERSTANDING 8.2

Verify that and have the same physical units.

Spherical Capacitor
A spherical capacitor is another set of conductors whose capacitance can be easily determined (Figure 8.6). It
consists of two concentric conducting spherical shells of radii (inner shell) and (outer shell). The shells
are given equal and opposite charges and , respectively. From symmetry, the electrical field between
the shells is directed radially outward. We can obtain the magnitude of the field by applying Gauss’s law over a
spherical Gaussian surface of radius r concentric with the shells. The enclosed charge is ; therefore we
have
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Thus, the electrical field between the conductors is

We substitute this into Equation 8.2 and integrate along a radial path between the shells:

 

In this equation, the potential difference between the plates is . We substitute this
result into Equation 8.1 to find the capacitance of a spherical capacitor:

Figure 8.6 A spherical capacitor consists of two concentric conducting spheres. Note that the charges on a conductor reside on its

surface.

EXAMPLE 8.3

Capacitance of an Isolated Sphere
Calculate the capacitance of a single isolated conducting sphere of radius and compare it with Equation 8.4
in the limit as ∞ .

Strategy
We assume that the charge on the sphere is Q, and so we follow the four steps outlined earlier. We also assume
the other conductor to be a concentric hollow sphere of infinite radius.

Solution
On the outside of an isolated conducting sphere, the electrical field is given by Equation 8.2. The magnitude of
the potential difference between the surface of an isolated sphere and infinity is

∞ ∞ ∞

8.4
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The capacitance of an isolated sphere is therefore

Significance

The same result can be obtained by taking the limit of Equation 8.4 as ∞ . A single isolated sphere is

therefore equivalent to a spherical capacitor whose outer shell has an infinitely large radius.

CHECK YOUR UNDERSTANDING 8.3

The radius of the outer sphere of a spherical capacitor is five times the radius of its inner shell. What are the
dimensions of this capacitor if its capacitance is 5.00 pF?

Cylindrical Capacitor
A cylindrical capacitor consists of two concentric, conducting cylinders (Figure 8.7). The inner cylinder, of
radius , may either be a shell or be completely solid. The outer cylinder is a shell of inner radius . We
assume that the length of each cylinder is l and that the excess charges and reside on the inner and
outer cylinders, respectively.

Figure 8.7 A cylindrical capacitor consists of two concentric, conducting cylinders. Here, the charge on the outer surface of the inner

cylinder is positive (indicated by ) and the charge on the inner surface of the outer cylinder is negative (indicated by ).

With edge effects ignored, the electrical field between the conductors is directed radially outward from the
common axis of the cylinders. Using the Gaussian surface shown in Figure 8.7, we have

Therefore, the electrical field between the cylinders is

Here is the unit radial vector along the radius of the cylinder. We can substitute into Equation 8.2 and find
the potential difference between the cylinders:

Thus, the capacitance of a cylindrical capacitor is

8.5
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As in other cases, this capacitance depends only on the geometry of the conductor arrangement. An important
application of Equation 8.6 is the determination of the capacitance per unit length of a coaxial cable, which is
commonly used to transmit time-varying electrical signals. A coaxial cable consists of two concentric,
cylindrical conductors separated by an insulating material. (Here, we assume a vacuum between the
conductors, but the physics is qualitatively almost the same when the space between the conductors is filled by
a dielectric.) This configuration shields the electrical signal propagating down the inner conductor from stray
electrical fields external to the cable. Current flows in opposite directions in the inner and the outer
conductors, with the outer conductor usually grounded. Now, from Equation 8.6, the capacitance per unit
length of the coaxial cable is given by

In practical applications, it is important to select specific values of C/l. This can be accomplished with
appropriate choices of radii of the conductors and of the insulating material between them.

CHECK YOUR UNDERSTANDING 8.4

When a cylindrical capacitor is given a charge of 0.500 nC, a potential difference of 20.0 V is measured
between the cylinders. (a) What is the capacitance of this system? (b) If the cylinders are 1.0 m long, what is the
ratio of their radii?

Several types of practical capacitors are shown in Figure 8.4. Common capacitors are often made of two small
pieces of metal foil separated by two small pieces of insulation (see Figure 8.2(b)). The metal foil and insulation
are encased in a protective coating, and two metal leads are used for connecting the foils to an external circuit.
Some common insulating materials are mica, ceramic, paper, and Teflon™ non-stick coating.

Another popular type of capacitor is an electrolytic capacitor. It consists of an oxidized metal in a conducting
paste. The main advantage of an electrolytic capacitor is its high capacitance relative to other common types of
capacitors. For example, capacitance of one type of aluminum electrolytic capacitor can be as high as 1.0 F.
However, you must be careful when using an electrolytic capacitor in a circuit, because it only functions
correctly when the metal foil is at a higher potential than the conducting paste. When reverse polarization
occurs, electrolytic action destroys the oxide film. This type of capacitor cannot be connected across an
alternating current source, because half of the time, ac voltage would have the wrong polarity, as an alternating
current reverses its polarity (see Alternating-Current Circuts on alternating-current circuits).

A variable air capacitor (Figure 8.8) has two sets of parallel plates. One set of plates is fixed (indicated as
“stator”), and the other set of plates is attached to a shaft that can be rotated (indicated as “rotor”). By turning
the shaft, the cross-sectional area in the overlap of the plates can be changed; therefore, the capacitance of this
system can be tuned to a desired value. Capacitor tuning has applications in any type of radio transmission
and in receiving radio signals from electronic devices. Any time you tune your car radio to your favorite
station, think of capacitance.

8.6
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Figure 8.8 In a variable air capacitor, capacitance can be tuned by changing the effective area of the plates. (credit: modification of work

by Robbie Sproule)

The symbols shown in Figure 8.9 are circuit representations of various types of capacitors. We generally use
the symbol shown in Figure 8.9(a). The symbol in Figure 8.9(c) represents a variable-capacitance capacitor.
Notice the similarity of these symbols to the symmetry of a parallel-plate capacitor. An electrolytic capacitor is
represented by the symbol in part Figure 8.9(b), where the curved plate indicates the negative terminal.

Figure 8.9 This shows three different circuit representations of capacitors. The symbol in (a) is the most commonly used one. The symbol

in (b) represents an electrolytic capacitor. The symbol in (c) represents a variable-capacitance capacitor.

An interesting applied example of a capacitor model comes from cell biology and deals with the electrical
potential in the plasma membrane of a living cell (Figure 8.10). Cell membranes separate cells from their
surroundings but allow some selected ions to pass in or out of the cell. The potential difference across a
membrane is about 70 mV. The cell membrane may be 7 to 10 nm thick. Treating the cell membrane as a
nano-sized capacitor, the estimate of the smallest electrical field strength across its ‘plates’ yields the value

.

This magnitude of electrical field is great enough to create an electrical spark in the air.
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Figure 8.10 The semipermeable membrane of a biological cell has different concentrations of ions on its interior surface than on its

exterior. Diffusion moves the (potassium) and (chloride) ions in the directions shown, until the Coulomb force halts further transfer.

In this way, the exterior of the membrane acquires a positive charge and its interior surface acquires a negative charge, creating a potential

difference across the membrane. The membrane is normally impermeable to Na+ (sodium ions).

INTERACTIVE

Visit the PhET Explorations: Capacitor Lab (https://openstax.org/l/21phetcapacitor) to explore how a capacitor
works. Change the size of the plates and add a dielectric to see the effect on capacitance. Change the voltage
and see charges built up on the plates. Observe the electrical field in the capacitor. Measure the voltage and the
electrical field.

8.2 Capacitors in Series and in Parallel
Learning Objectives
By the end of this section, you will be able to:

• Explain how to determine the equivalent capacitance of capacitors in series and in parallel combinations
• Compute the potential difference across the plates and the charge on the plates for a capacitor in a network

and determine the net capacitance of a network of capacitors

Several capacitors can be connected together to be used in a variety of applications. Multiple connections of
capacitors behave as a single equivalent capacitor. The total capacitance of this equivalent single capacitor
depends both on the individual capacitors and how they are connected. Capacitors can be arranged in two
simple and common types of connections, known as series and parallel, for which we can easily calculate the
total capacitance. These two basic combinations, series and parallel, can also be used as part of more complex
connections.

The Series Combination of Capacitors
Figure 8.11 illustrates a series combination of three capacitors, arranged in a row within the circuit. As for any
capacitor, the capacitance of the combination is related to the charge and voltage by using Equation 8.1. When
this series combination is connected to a battery with voltage V, each of the capacitors acquires an identical
charge Q. To explain, first note that the charge on the plate connected to the positive terminal of the battery is

and the charge on the plate connected to the negative terminal is . Charges are then induced on the
other plates so that the sum of the charges on all plates, and the sum of charges on any pair of capacitor plates,
is zero. However, the potential drop on one capacitor may be different from the potential drop

on another capacitor, because, generally, the capacitors may have different capacitances. The
series combination of two or three capacitors resembles a single capacitor with a smaller capacitance.
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Generally, any number of capacitors connected in series is equivalent to one capacitor whose capacitance
(called the equivalent capacitance) is smaller than the smallest of the capacitances in the series combination.
Charge on this equivalent capacitor is the same as the charge on any capacitor in a series combination: That is,
all capacitors of a series combination have the same charge. This occurs due to the conservation of charge in
the circuit. When a charge Q in a series circuit is removed from a plate of the first capacitor (which we denote
as ), it must be placed on a plate of the second capacitor (which we denote as and so on.

Figure 8.11 (a) Three capacitors are connected in series. The magnitude of the charge on each plate is Q. (b) The network of capacitors in

(a) is equivalent to one capacitor that has a smaller capacitance than any of the individual capacitances in (a), and the charge on its plates is

Q.

We can find an expression for the total (equivalent) capacitance by considering the voltages across the
individual capacitors. The potentials across capacitors 1, 2, and 3 are, respectively, , ,
and . These potentials must sum up to the voltage of the battery, giving the following potential
balance:

Potential V is measured across an equivalent capacitor that holds charge Q and has an equivalent capacitance
. Entering the expressions for , , and , we get

Canceling the charge Q, we obtain an expression containing the equivalent capacitance, , of three capacitors
connected in series:

This expression can be generalized to any number of capacitors in a series network.

Series Combination

For capacitors connected in a series combination, the reciprocal of the equivalent capacitance is the sum
of reciprocals of individual capacitances:

8.7
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EXAMPLE 8.4

Equivalent Capacitance of a Series Network
Find the total capacitance for three capacitors connected in series, given their individual capacitances are

, , and .

Strategy
Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.7 with three terms.

Solution
We enter the given capacitances into Equation 8.7:

Now we invert this result and obtain

Significance
Note that in a series network of capacitors, the equivalent capacitance is always less than the smallest
individual capacitance in the network.

The Parallel Combination of Capacitors
A parallel combination of three capacitors, with one plate of each capacitor connected to one side of the circuit
and the other plate connected to the other side, is illustrated in Figure 8.12(a). Since the capacitors are
connected in parallel, they all have the same voltage V across their plates. However, each capacitor in the
parallel network may store a different charge. To find the equivalent capacitance of the parallel network,
we note that the total charge Q stored by the network is the sum of all the individual charges:

On the left-hand side of this equation, we use the relation , which holds for the entire network. On the
right-hand side of the equation, we use the relations and for the three
capacitors in the network. In this way we obtain

This equation, when simplified, is the expression for the equivalent capacitance of the parallel network of
three capacitors:

This expression is easily generalized to any number of capacitors connected in parallel in the network.

Parallel Combination

For capacitors connected in a parallel combination, the equivalent (net) capacitance is the sum of all
individual capacitances in the network,

8.8
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Figure 8.12 (a) Three capacitors are connected in parallel. Each capacitor is connected directly to the battery. (b) The charge on the

equivalent capacitor is the sum of the charges on the individual capacitors.

EXAMPLE 8.5

Equivalent Capacitance of a Parallel Network
Find the net capacitance for three capacitors connected in parallel, given their individual capacitances are

Strategy
Because there are only three capacitors in this network, we can find the equivalent capacitance by using
Equation 8.8 with three terms.

Solution
Entering the given capacitances into Equation 8.8 yields

Significance
Note that in a parallel network of capacitors, the equivalent capacitance is always larger than any of the
individual capacitances in the network.

Capacitor networks are usually some combination of series and parallel connections, as shown in Figure 8.13.
To find the net capacitance of such combinations, we identify parts that contain only series or only parallel
connections, and find their equivalent capacitances. We repeat this process until we can determine the
equivalent capacitance of the entire network. The following example illustrates this process.
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Figure 8.13 (a) This circuit contains both series and parallel connections of capacitors. (b) and are in series; their equivalent

capacitance is (c) The equivalent capacitance is connected in parallel with Thus, the equivalent capacitance of the entire

network is the sum of and

EXAMPLE 8.6

Equivalent Capacitance of a Network
Find the total capacitance of the combination of capacitors shown in Figure 8.13. Assume the capacitances are
known to three decimal places Round your answer to three
decimal places.

Strategy
We first identify which capacitors are in series and which are in parallel. Capacitors and are in series.
Their combination, labeled is in parallel with

Solution
Since are in series, their equivalent capacitance is obtained with Equation 8.7:

Capacitance is connected in parallel with the third capacitance , so we use Equation 8.8 to find the
equivalent capacitance C of the entire network:

EXAMPLE 8.7

Network of Capacitors
Determine the net capacitance C of the capacitor combination shown in Figure 8.14 when the capacitances are

and . When a 12.0-V potential difference is maintained across the
combination, find the charge and the voltage across each capacitor.
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Figure 8.14 (a) A capacitor combination. (b) An equivalent two-capacitor combination.

Strategy
We first compute the net capacitance of the parallel connection and . Then C is the net capacitance
of the series connection and . We use the relation to find the charges , , and , and the
voltages , , and , across capacitors 1, 2, and 3, respectively.

Solution
The equivalent capacitance for and is

The entire three-capacitor combination is equivalent to two capacitors in series,

Consider the equivalent two-capacitor combination in Figure 8.14(b). Since the capacitors are in series, they
have the same charge, . Also, the capacitors share the 12.0-V potential difference, so

Now the potential difference across capacitor 1 is

Because capacitors 2 and 3 are connected in parallel, they are at the same potential difference:

Hence, the charges on these two capacitors are, respectively,

Significance
As expected, the net charge on the parallel combination of and is

CHECK YOUR UNDERSTANDING 8.5

Determine the net capacitance C of each network of capacitors shown below. Assume that ,
, , and . Find the charge on each capacitor, assuming there is a potential

difference of 12.0 V across each network.
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8.3 Energy Stored in a Capacitor
Learning Objectives
By the end of this section, you will be able to:

• Explain how energy is stored in a capacitor
• Use energy relations to determine the energy stored in a capacitor network

Most of us have seen dramatizations of medical personnel using a defibrillator to pass an electrical current
through a patient’s heart to get it to beat normally. Often realistic in detail, the person applying the shock
directs another person to “make it 400 joules this time.” The energy delivered by the defibrillator is stored in a
capacitor and can be adjusted to fit the situation. SI units of joules are often employed. Less dramatic is the use
of capacitors in microelectronics to supply energy when batteries are charged (Figure 8.15). Capacitors are
also used to supply energy for flash lamps on cameras.
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Figure 8.15 The capacitors on the circuit board for an electronic device follow a labeling convention that identifies each one with a code

that begins with the letter “C.” (credit: Windell Oskay)

The energy stored in a capacitor is electrostatic potential energy and is thus related to the charge Q and
voltage V between the capacitor plates. A charged capacitor stores energy in the electrical field between its
plates. As the capacitor is being charged, the electrical field builds up. When a charged capacitor is
disconnected from a battery, its energy remains in the field in the space between its plates.

To gain insight into how this energy may be expressed (in terms of Q and V), consider a charged, empty,
parallel-plate capacitor; that is, a capacitor without a dielectric but with a vacuum between its plates. The
space between its plates has a volume Ad, and it is filled with a uniform electrostatic field E. The total energy

of the capacitor is contained within this space. The energy density in this space is simply divided
by the volume Ad. If we know the energy density, the energy can be found as . We will learn in
Electromagnetic Waves (after completing the study of Maxwell’s equations) that the energy density in a
region of free space occupied by an electrical field E depends only on the magnitude of the field and is

If we multiply the energy density by the volume between the plates, we obtain the amount of energy stored
between the plates of a parallel-plate

capacitor: .

In this derivation, we used the fact that the electrical field between the plates is uniform so that and
Because , we can express this result in other equivalent forms:

The expression in Equation 8.10 for the energy stored in a parallel-plate capacitor is generally valid for all
types of capacitors. To see this, consider any uncharged capacitor (not necessarily a parallel-plate type). At
some instant, we connect it across a battery, giving it a potential difference between its plates.
Initially, the charge on the plates is As the capacitor is being charged, the charge gradually builds up on
its plates, and after some time, it reaches the value Q. To move an infinitesimal charge dq from the negative
plate to the positive plate (from a lower to a higher potential), the amount of work dW that must be done on dq
is .

This work becomes the energy stored in the electrical field of the capacitor. In order to charge the capacitor to
a charge Q, the total work required is

Since the geometry of the capacitor has not been specified, this equation holds for any type of capacitor. The

8.9
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total work W needed to charge a capacitor is the electrical potential energy stored in it, or . When
the charge is expressed in coulombs, potential is expressed in volts, and the capacitance is expressed in
farads, this relation gives the energy in joules.

Knowing that the energy stored in a capacitor is , we can now find the energy density stored
in a vacuum between the plates of a charged parallel-plate capacitor. We just have to divide by the volume
Ad of space between its plates and take into account that for a parallel-plate capacitor, we have and

. Therefore, we obtain

We see that this expression for the density of energy stored in a parallel-plate capacitor is in accordance with
the general relation expressed in Equation 8.9. We could repeat this calculation for either a spherical capacitor
or a cylindrical capacitor—or other capacitors—and in all cases, we would end up with the general relation
given by Equation 8.9.

EXAMPLE 8.8

Energy Stored in a Capacitor
Calculate the energy stored in the capacitor network in Figure 8.14(a) when the capacitors are fully charged
and when the capacitances are and respectively.

Strategy
We use Equation 8.10 to find the energy , , and stored in capacitors 1, 2, and 3, respectively. The total
energy is the sum of all these energies.

Solution
We identify and , and , and The
energies stored in these capacitors are

The total energy stored in this network is

Significance
We can verify this result by calculating the energy stored in the single capacitor, which is found to be
equivalent to the entire network. The voltage across the network is 12.0 V. The total energy obtained in this
way agrees with our previously obtained result, .

CHECK YOUR UNDERSTANDING 8.6

The potential difference across a 5.0-pF capacitor is 0.40 V. (a) What is the energy stored in this capacitor? (b)
The potential difference is now increased to 1.20 V. By what factor is the stored energy increased?

In a cardiac emergency, a portable electronic device known as an automated external defibrillator (AED) can be
a lifesaver. A defibrillator (Figure 8.16) delivers a large charge in a short burst, or a shock, to a person’s heart
to correct abnormal heart rhythm (an arrhythmia). A heart attack can arise from the onset of fast, irregular
beating of the heart—called cardiac or ventricular fibrillation. Applying a large shock of electrical energy can
terminate the arrhythmia and allow the body’s natural pacemaker to resume its normal rhythm. Today, it is
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common for ambulances to carry AEDs. AEDs are also found in many public places. These are designed to be
used by lay persons. The device automatically diagnoses the patient’s heart rhythm and then applies the shock
with appropriate energy and waveform. CPR (cardiopulmonary resuscitation) is recommended in many cases
before using a defibrillator.

Figure 8.16 Automated external defibrillators are found in many public places. These portable units provide verbal instructions for use in

the important first few minutes for a person suffering a cardiac attack. (credit: Owain Davies)

EXAMPLE 8.9

Capacitance of a Heart Defibrillator
A heart defibrillator delivers of energy by discharging a capacitor initially at What
is its capacitance?

Strategy
We are given and V, and we are asked to find the capacitance C. We solve Equation 8.10 for C and
substitute.

Solution

Solving this expression for C and entering the given values yields

8.4 Capacitor with a Dielectric
Learning Objectives
By the end of this section, you will be able to:

• Describe the effects a dielectric in a capacitor has on capacitance and other properties
• Calculate the capacitance of a capacitor containing a dielectric

As we discussed earlier, an insulating material placed between the plates of a capacitor is called a dielectric.
Inserting a dielectric between the plates of a capacitor affects its capacitance. To see why, let’s consider an
experiment described in Figure 8.17. Initially, a capacitor with capacitance when there is air between its
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plates is charged by a battery to voltage . When the capacitor is fully charged, the battery is disconnected. A
charge then resides on the plates, and the potential difference between the plates is measured to be .
Now, suppose we insert a dielectric that totally fills the gap between the plates. If we monitor the voltage, we
find that the voltmeter reading has dropped to a smaller value V. We write this new voltage value as a fraction
of the original voltage , with a positive number , :

The constant in this equation is called the dielectric constant of the material between the plates, and its
value is characteristic for the material. A detailed explanation for why the dielectric reduces the voltage is
given in the next section. Different materials have different dielectric constants (a table of values for typical
materials is provided in the next section). Once the battery becomes disconnected, there is no path for a
charge to flow to the battery from the capacitor plates. Hence, the insertion of the dielectric has no effect on the
charge on the plate, which remains at a value of . Therefore, we find that the capacitance of the capacitor
with a dielectric is

This equation tells us that the capacitance of an empty (vacuum) capacitor can be increased by a factor of
when we insert a dielectric material to completely fill the space between its plates. Note that Equation 8.11 can
also be used for an empty capacitor by setting . In other words, we can say that the dielectric constant of
the vacuum is 1, which is a reference value.

Figure 8.17 (a) When fully charged, a vacuum capacitor has a voltage and charge (the charges remain on plate’s inner surfaces; the

schematic indicates the sign of charge on each plate). (b) In step 1, the battery is disconnected. Then, in step 2, a dielectric (that is

electrically neutral) is inserted into the charged capacitor. When the voltage across the capacitor is now measured, it is found that the

voltage value has decreased to . The schematic indicates the sign of the induced charge that is now present on the surfaces of the

dielectric material between the plates.

The principle expressed by Equation 8.11 is widely used in the construction industry (Figure 8.18). Metal
plates in an electronic stud finder act effectively as a capacitor. You place a stud finder with its flat side on the
wall and move it continually in the horizontal direction. When the finder moves over a wooden stud, the
capacitance of its plates changes, because wood has a different dielectric constant than a gypsum wall. This
change triggers a signal in a circuit, and thus the stud is detected.

8.11
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Figure 8.18 An electronic stud finder is used to detect wooden studs behind drywall. (credit top: modification of work by Jane Whitney)

The electrical energy stored by a capacitor is also affected by the presence of a dielectric. When the energy
stored in an empty capacitor is , the energy U stored in a capacitor with a dielectric is smaller by a factor of

,

As a dielectric material sample is brought near an empty charged capacitor, the sample reacts to the electrical
field of the charges on the capacitor plates. Just as we learned in Electric Charges and Fields on electrostatics,
there will be the induced charges on the surface of the sample; however, they are not free charges like in a
conductor, because a perfect insulator does not have freely moving charges. These induced charges on the
dielectric surface are of an opposite sign to the free charges on the plates of the capacitor, and so they are
attracted by the free charges on the plates. Consequently, the dielectric is “pulled” into the gap, and the work to
polarize the dielectric material between the plates is done at the expense of the stored electrical energy, which
is reduced, in accordance with Equation 8.12.

EXAMPLE 8.10

Inserting a Dielectric into an Isolated Capacitor
An empty 20.0-pF capacitor is charged to a potential difference of 40.0 V. The charging battery is then
disconnected, and a piece of Teflon™ with a dielectric constant of 2.1 is inserted to completely fill the space
between the capacitor plates (see Figure 8.17). What are the values of (a) the capacitance, (b) the charge of the
plate, (c) the potential difference between the plates, and (d) the energy stored in the capacitor with and
without dielectric?

8.12
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Strategy
We identify the original capacitance and the original potential difference between
the plates. We combine Equation 8.11 with other relations involving capacitance and substitute.

Solution

a. The capacitance increases to

b. Without dielectric, the charge on the plates is

Since the battery is disconnected before the dielectric is inserted, the plate charge is unaffected by the
dielectric and remains at 0.8 nC.

c. With the dielectric, the potential difference becomes

d. The stored energy without the dielectric is

With the dielectric inserted, we use Equation 8.12 to find that the stored energy decreases to

Significance
Notice that the effect of a dielectric on the capacitance of a capacitor is a drastic increase of its capacitance.
This effect is far more profound than a mere change in the geometry of a capacitor.

CHECK YOUR UNDERSTANDING 8.7

When a dielectric is inserted into an isolated and charged capacitor, the stored energy decreases to 33% of its
original value. (a) What is the dielectric constant? (b) How does the capacitance change?

8.5 Molecular Model of a Dielectric
Learning Objectives
By the end of this section, you will be able to:

• Explain the polarization of a dielectric in a uniform electrical field
• Describe the effect of a polarized dielectric on the electrical field between capacitor plates
• Explain dielectric breakdown

We can understand the effect of a dielectric on capacitance by looking at its behavior at the molecular level. As
we have seen in earlier chapters, in general, all molecules can be classified as either polar or nonpolar. There
is a net separation of positive and negative charges in an isolated polar molecule, whereas there is no charge
separation in an isolated nonpolar molecule (Figure 8.19). In other words, polar molecules have permanent
electric-dipole moments and nonpolar molecules do not. For example, a molecule of water is polar, and a
molecule of oxygen is nonpolar. Nonpolar molecules can become polar in the presence of an external electrical
field, which is called induced polarization.
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CHAPTER REVIEW
Key Terms
capacitance amount of charge stored per unit volt
capacitor device that stores electrical charge and

electrical energy
dielectric insulating material used to fill the space

between two plates
dielectric breakdown phenomenon that occurs

when an insulator becomes a conductor in a
strong electrical field

dielectric constant factor by which capacitance
increases when a dielectric is inserted between
the plates of a capacitor

dielectric strength critical electrical field strength
above which molecules in insulator begin to
break down and the insulator starts to conduct

energy density energy stored in a capacitor
divided by the volume between the plates

induced electric-dipole moment dipole moment
that a nonpolar molecule may acquire when it is
placed in an electrical field

induced electrical field electrical field in the
dielectric due to the presence of induced charges

induced surface charges charges that occur on a
dielectric surface due to its polarization

parallel combination components in a circuit
arranged with one side of each component
connected to one side of the circuit and the other
sides of the components connected to the other
side of the circuit

parallel-plate capacitor system of two identical
parallel conducting plates separated by a distance

series combination components in a circuit
arranged in a row one after the other in a circuit

Key Equations

Capacitance

Capacitance of a parallel-plate capacitor

Capacitance of a vacuum spherical capacitor

Capacitance of a vacuum cylindrical capacitor

Capacitance of a series combination

Capacitance of a parallel combination

Energy density

Energy stored in a capacitor

Capacitance of a capacitor with dielectric

Energy stored in an isolated capacitor with
dielectric

Dielectric constant

Induced electrical field in a dielectric
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Summary
8.1 Capacitors and Capacitance

• A capacitor is a device that stores an electrical
charge and electrical energy. The amount of
charge a vacuum capacitor can store depends
on two major factors: the voltage applied and
the capacitor’s physical characteristics, such as
its size and geometry.

• The capacitance of a capacitor is a parameter
that tells us how much charge can be stored in
the capacitor per unit potential difference
between its plates. Capacitance of a system of
conductors depends only on the geometry of
their arrangement and physical properties of
the insulating material that fills the space
between the conductors. The unit of capacitance
is the farad, where

8.2 Capacitors in Series and in Parallel

• When several capacitors are connected in a
series combination, the reciprocal of the
equivalent capacitance is the sum of the
reciprocals of the individual capacitances.

• When several capacitors are connected in a
parallel combination, the equivalent
capacitance is the sum of the individual
capacitances.

• When a network of capacitors contains a
combination of series and parallel connections,
we identify the series and parallel networks, and
compute their equivalent capacitances step by
step until the entire network becomes reduced
to one equivalent capacitance.

8.3 Energy Stored in a Capacitor

• Capacitors are used to supply energy to a variety
of devices, including defibrillators,
microelectronics such as calculators, and flash
lamps.

• The energy stored in a capacitor is the work
required to charge the capacitor, beginning with
no charge on its plates. The energy is stored in
the electrical field in the space between the

capacitor plates. It depends on the amount of
electrical charge on the plates and on the
potential difference between the plates.

• The energy stored in a capacitor network is the
sum of the energies stored on individual
capacitors in the network. It can be computed as
the energy stored in the equivalent capacitor of
the network.

8.4 Capacitor with a Dielectric

• The capacitance of an empty capacitor is
increased by a factor of when the space
between its plates is completely filled by a
dielectric with dielectric constant .

• Each dielectric material has its specific
dielectric constant.

• The energy stored in an empty isolated
capacitor is decreased by a factor of when the
space between its plates is completely filled with
a dielectric with dielectric constant while
disconnecting the battery and keeping the
charge on the capacitor constant.

8.5 Molecular Model of a Dielectric

• When a dielectric is inserted between the plates
of a capacitor, equal and opposite surface
charge is induced on the two faces of the
dielectric. The induced surface charge produces
an induced electrical field that opposes the field
of the free charge on the capacitor plates.

• The dielectric constant of a material is the ratio
of the electrical field in vacuum to the net
electrical field in the material. A capacitor filled
with dielectric has a larger capacitance than an
empty capacitor.

• The dielectric strength of an insulator
represents a critical value of electrical field at
which the molecules in an insulating material
start to become ionized. When this happens, the
material can conduct and dielectric breakdown
is observed.

Conceptual Questions
8.1 Capacitors and Capacitance

1. Does the capacitance of a device depend on the
applied voltage? Does the capacitance of a device
depend on the charge residing on it?

2. Would you place the plates of a parallel-plate
capacitor closer together or farther apart to

increase their capacitance?
3. The value of the capacitance is zero if the plates

are not charged. True or false?
4. If the plates of a capacitor have different areas,

will they acquire the same charge when the
capacitor is connected across a battery?
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