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Flux is a general and broadly applicable concept in physics. However, in this chapter, we
concentrate on the flux of the electric field. This allows us to introduce Gauss’s law, which is particularly useful
for finding the electric fields of charge distributions exhibiting spatial symmetry. The main topics discussed
here are

1. Electric flux. We define electric flux for both open and closed surfaces.
2. Gauss’s law. We derive Gauss’s law for an arbitrary charge distribution and examine the role of electric

flux in Gauss’s law.
3. Calculating electric fields with Gauss’s law. The main focus of this chapter is to explain how to use

Gauss’s law to find the electric fields of spatially symmetrical charge distributions. We discuss the
importance of choosing a Gaussian surface and provide examples involving the applications of Gauss’s
law.

Figure 6.1 This chapter introduces the concept of flux, which relates a physical quantity and the area through
which it is flowing. Although we introduce this concept with the electric field, the concept may be used for many
other quantities, such as fluid flow. (credit: modification of work by “Alessandro”/Flickr)
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4. Electric fields in conductors. Gauss’s law provides useful insight into the absence of electric fields in
conducting materials.

So far, we have found that the electrostatic field begins and ends at point charges and that the field of a point
charge varies inversely with the square of the distance from that charge. These characteristics of the
electrostatic field lead to an important mathematical relationship known as Gauss’s law. This law is named in
honor of the extraordinary German mathematician and scientist Karl Friedrich Gauss (Figure 6.2). Gauss’s law
gives us an elegantly simple way of finding the electric field, and, as you will see, it can be much easier to use
than the integration method described in the previous chapter. However, there is a catch—Gauss’s law has a
limitation in that, while always true, it can be readily applied only for charge distributions with certain
symmetries.

Figure 6.2 Karl Friedrich Gauss (1777–1855) was a legendary mathematician of the nineteenth century. Although his major contributions

were to the field of mathematics, he also did important work in physics and astronomy.

6.1 Electric Flux
Learning Objectives
By the end of this section, you will be able to:

• Define the concept of flux
• Describe electric flux
• Calculate electric flux for a given situation

The concept of flux describes how much of something goes through a given area. More formally, it is the dot
product of a vector field (in this chapter, the electric field) with an area. You may conceptualize the flux of an
electric field as a measure of the number of electric field lines passing through an area (Figure 6.3). The larger
the area, the more field lines go through it and, hence, the greater the flux; similarly, the stronger the electric
field is (represented by a greater density of lines), the greater the flux. On the other hand, if the area rotated so
that the plane is aligned with the field lines, none will pass through and there will be no flux.

230 6 • Gauss's Law

Access for free at openstax.org.



Figure 6.3 The flux of an electric field through the shaded area captures information about the “number” of electric field lines passing

through the area. The numerical value of the electric flux depends on the magnitudes of the electric field and the area, as well as the

relative orientation of the area with respect to the direction of the electric field.

A macroscopic analogy that might help you imagine this is to put a hula hoop in a flowing river. As you change
the angle of the hoop relative to the direction of the current, more or less of the flow will go through the hoop.
Similarly, the amount of flow through the hoop depends on the strength of the current and the size of the hoop.
Again, flux is a general concept; we can also use it to describe the amount of sunlight hitting a solar panel or
the amount of energy a telescope receives from a distant star, for example.

To quantify this idea, Figure 6.4(a) shows a planar surface of area that is perpendicular to the uniform
electric field If N field lines pass through , then we know from the definition of electric field lines
(Electric Charges and Fields) that or

The quantity is the electric flux through . We represent the electric flux through an open surface like
by the symbol . Electric flux is a scalar quantity and has an SI unit of newton-meters squared per coulomb

( ). Notice that may also be written as , demonstrating that electric flux is a measure
of the number of field lines crossing a surface.

Figure 6.4 (a) A planar surface of area is perpendicular to the electric field . N field lines cross surface . (b) A surface of

area whose projection onto the xz-plane is .The same number of field lines cross each surface.

Now consider a planar surface that is not perpendicular to the field. How would we represent the electric flux?
Figure 6.4(b) shows a surface of area that is inclined at an angle to the xz-plane and whose projection
in that plane is (area ). The areas are related by Because the same number of field lines
crosses both and , the fluxes through both surfaces must be the same. The flux through is therefore

Designating as a unit vector normal to (see Figure 6.4(b)), we obtain

INTERACTIVE

Check out this video (https://openstax.org/l/21fluxsizeangl) to observe what happens to the flux as the area
changes in size and angle, or the electric field changes in strength.
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Area Vector
For discussing the flux of a vector field, it is helpful to introduce an area vector This allows us to write the
last equation in a more compact form. What should the magnitude of the area vector be? What should the
direction of the area vector be? What are the implications of how you answer the previous question?

The area vector of a flat surface of area A has the following magnitude and direction:

• Magnitude is equal to area (A)
• Direction is along the normal to the surface ( ); that is, perpendicular to the surface.

Since the normal to a flat surface can point in either direction from the surface, the direction of the area vector
of an open surface needs to be chosen, as shown in Figure 6.5.

Figure 6.5 The direction of the area vector of an open surface needs to be chosen; it could be either of the two cases displayed here. The

area vector of a part of a closed surface is defined to point from the inside of the closed space to the outside. This rule gives a unique

direction.

Since is a unit normal to a surface, it has two possible directions at every point on that surface (Figure 6.6(a)).
For an open surface, we can use either direction, as long as we are consistent over the entire surface. Part (c) of
the figure shows several cases.
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Figure 6.6 (a) Two potential normal vectors arise at every point on a surface. (b) The outward normal is used to calculate the flux through

a closed surface. (c) Only has been given a consistent set of normal vectors that allows us to define the flux through the surface.

However, if a surface is closed, then the surface encloses a volume. In that case, the direction of the normal
vector at any point on the surface points from the inside to the outside. On a closed surface such as that of
Figure 6.6(b), is chosen to be the outward normal at every point, to be consistent with the sign convention for
electric charge.

Electric Flux
Now that we have defined the area vector of a surface, we can define the electric flux of a uniform electric field
through a flat area as the scalar product of the electric field and the area vector, as defined in Products of
Vectors:

Figure 6.7 shows the electric field of an oppositely charged, parallel-plate system and an imaginary box
between the plates. The electric field between the plates is uniform and points from the positive plate toward
the negative plate. A calculation of the flux of this field through various faces of the box shows that the net flux
through the box is zero. Why does the flux cancel out here?

6.1
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Figure 6.7 Electric flux through a cube, placed between two charged plates. Electric flux through the bottom face (ABCD) is negative,

because is in the opposite direction to the normal to the surface. The electric flux through the top face (FGHK) is positive, because the

electric field and the normal are in the same direction. The electric flux through the other faces is zero, since the electric field is

perpendicular to the normal vectors of those faces. The net electric flux through the cube is the sum of fluxes through the six faces. Here,

the net flux through the cube is equal to zero. The magnitude of the flux through rectangle BCKF is equal to the magnitudes of the flux

through both the top and bottom faces.

The reason is that the sources of the electric field are outside the box. Therefore, if any electric field line enters
the volume of the box, it must also exit somewhere on the surface because there is no charge inside for the
lines to land on. Therefore, quite generally, electric flux through a closed surface is zero if there are no sources
of electric field, whether positive or negative charges, inside the enclosed volume. In general, when field lines
leave (or “flow out of”) a closed surface, is positive; when they enter (or “flow into”) the surface, is
negative.

Any smooth, non-flat surface can be replaced by a collection of tiny, approximately flat surfaces, as shown in
Figure 6.8. If we divide a surface S into small patches, then we notice that, as the patches become smaller, they
can be approximated by flat surfaces. This is similar to the way we treat the surface of Earth as locally flat, even
though we know that globally, it is approximately spherical.
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Figure 6.8 A surface is divided into patches to find the flux.

To keep track of the patches, we can number them from 1 through N . Now, we define the area vector for each
patch as the area of the patch pointed in the direction of the normal. Let us denote the area vector for the ith
patch by (We have used the symbol to remind us that the area is of an arbitrarily small patch.) With
sufficiently small patches, we may approximate the electric field over any given patch as uniform. Let us
denote the average electric field at the location of the ith patch by

Therefore, we can write the electric flux through the area of the ith patch as

The flux through each of the individual patches can be constructed in this manner and then added to give us
an estimate of the net flux through the entire surface S, which we denote simply as .

This estimate of the flux gets better as we decrease the size of the patches. However, when you use smaller
patches, you need more of them to cover the same surface. In the limit of infinitesimally small patches, they
may be considered to have area dA and unit normal . Since the elements are infinitesimal, they may be
assumed to be planar, and may be taken as constant over any element. Then the flux through an area
dA is given by It is positive when the angle between and is less than and negative
when the angle is greater than . The net flux is the sum of the infinitesimal flux elements over the entire
surface. With infinitesimally small patches, you need infinitely many patches, and the limit of the sum

becomes a surface integral. With representing the integral over S,

In practical terms, surface integrals are computed by taking the antiderivatives of both dimensions defining
the area, with the edges of the surface in question being the bounds of the integral.

To distinguish between the flux through an open surface like that of Figure 6.4 and the flux through a closed

6.2
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surface (one that completely bounds some volume), we represent flux through a closed surface by

where the circle through the integral symbol simply means that the surface is closed, and we are integrating
over the entire thing. If you only integrate over a portion of a closed surface, that means you are treating a
subset of it as an open surface.

EXAMPLE 6.1

Flux of a Uniform Electric Field
A constant electric field of magnitude points in the direction of the positive z-axis (Figure 6.9). What is the
electric flux through a rectangle with sides a and b in the (a) xy-plane and in the (b) xz-plane?

Figure 6.9 Calculating the flux of through a rectangular surface.

Strategy

Apply the definition of flux: , where the definition of dot product is crucial.

Solution

a. In this case,
b. Here, the direction of the area vector is either along the positive y-axis or toward the negative y-axis.

Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

Significance
The relative directions of the electric field and area can cause the flux through the area to be zero.

EXAMPLE 6.2

Flux of a Uniform Electric Field through a Closed Surface
A constant electric field of magnitude points in the direction of the positive z-axis (Figure 6.10). What is the
net electric flux through a cube?

6.3

236 6 • Gauss's Law

Access for free at openstax.org.



Figure 6.10 Calculating the flux of through a closed cubic surface.

Strategy

Apply the definition of flux: , noting that a closed surface eliminates the ambiguity in
the direction of the area vector.

Solution

Through the top face of the cube,

Through the bottom face of the cube, because the area vector here points downward.

Along the other four sides, the direction of the area vector is perpendicular to the direction of the electric field.
Therefore, the scalar product of the electric field with the area vector is zero, giving zero flux.

The net flux is .

Significance
The net flux of a uniform electric field through a closed surface is zero.

EXAMPLE 6.3

Electric Flux through a Plane, Integral Method
A uniform electric field of magnitude 10 N/C is directed parallel to the yz-plane at above the xy-plane, as
shown in Figure 6.11. What is the electric flux through the plane surface of area located in the
xz-plane? Assume that points in the positive y-direction.
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Figure 6.11 The electric field produces a net electric flux through the surface S.

Strategy

Apply , where the direction and magnitude of the electric field are constant.

Solution

The angle between the uniform electric field and the unit normal to the planar surface is . Since both
the direction and magnitude are constant, E comes outside the integral. All that is left is a surface integral over
dA, which is A. Therefore, using the open-surface equation, we find that the electric flux through the surface is

Significance
Again, the relative directions of the field and the area matter, and the general equation with the integral will
simplify to the simple dot product of area and electric field.

CHECK YOUR UNDERSTANDING 6.1

What angle should there be between the electric field and the surface shown in Figure 6.11 in the previous
example so that no electric flux passes through the surface?

EXAMPLE 6.4

Inhomogeneous Electric Field
What is the total flux of the electric field through the rectangular surface shown in Figure 6.12?
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Figure 6.12 Since the electric field is not constant over the surface, an integration is necessary to determine the flux.

Strategy

Apply . We assume that the unit normal to the given surface points in the positive

z-direction, so Since the electric field is not uniform over the surface, it is necessary to divide the
surface into infinitesimal strips along which is essentially constant. As shown in Figure 6.12, these strips
are parallel to the x-axis, and each strip has an area

Solution
From the open surface integral, we find that the net flux through the rectangular surface is

Significance
For a non-constant electric field, the integral method is required.

CHECK YOUR UNDERSTANDING 6.2

If the electric field in Example 6.4 is what is the flux through the rectangular area?

6.2 Explaining Gauss’s Law
Learning Objectives
By the end of this section, you will be able to:

• State Gauss’s law
• Explain the conditions under which Gauss’s law may be used
• Apply Gauss’s law in appropriate systems

We can now determine the electric flux through an arbitrary closed surface due to an arbitrary charge
distribution. We found that if a closed surface does not have any charge inside where an electric field line can
terminate, then any electric field line entering the surface at one point must necessarily exit at some other
point of the surface. Therefore, if a closed surface does not have any charges inside the enclosed volume, then
the electric flux through the surface is zero. Now, what happens to the electric flux if there are some charges
inside the enclosed volume? Gauss’s law gives a quantitative answer to this question.
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To get a feel for what to expect, let’s calculate the electric flux through a spherical surface around a positive
point charge q, since we already know the electric field in such a situation. Recall that when we place the point
charge at the origin of a coordinate system, the electric field at a point P that is at a distance r from the charge
at the origin is given by

where is the radial vector from the charge at the origin to the point P. We can use this electric field to find the
flux through the spherical surface of radius r, as shown in Figure 6.13.

Figure 6.13 A closed spherical surface surrounding a point charge q.

Then we apply to this system and substitute known values. On the sphere, and ,

so for an infinitesimal area dA,

We now find the net flux by integrating this flux over the surface of the sphere:

where the total surface area of the spherical surface is This gives the flux through the closed spherical
surface at radius r as

A remarkable fact about this equation is that the flux is independent of the size of the spherical surface. This
can be directly attributed to the fact that the electric field of a point charge decreases as with distance,
which just cancels the rate of increase of the surface area.

Electric Field Lines Picture
An alternative way to see why the flux through a closed spherical surface is independent of the radius of the
surface is to look at the electric field lines. Note that every field line from q that pierces the surface at radius
also pierces the surface at (Figure 6.14).

6.4

240 6 • Gauss's Law

Access for free at openstax.org.



Figure 6.14 Flux through spherical surfaces of radii and enclosing a charge q are equal, independent of the size of the surface,

since all E-field lines that pierce one surface from the inside to outside direction also pierce the other surface in the same direction.

Therefore, the net number of electric field lines passing through the two surfaces from the inside to outside
direction is equal. This net number of electric field lines, which is obtained by subtracting the number of lines
in the direction from outside to inside from the number of lines in the direction from inside to outside gives a
visual measure of the electric flux through the surfaces.

You can see that if no charges are included within a closed surface, then the electric flux through it must be
zero. A typical field line enters the surface at and leaves at Every line that enters the surface must
also leave that surface. Hence the net “flow” of the field lines into or out of the surface is zero (Figure 6.15(a)).
The same thing happens if charges of equal and opposite sign are included inside the closed surface, so that
the total charge included is zero (part (b)). A surface that includes the same amount of charge has the same
number of field lines crossing it, regardless of the shape or size of the surface, as long as the surface encloses
the same amount of charge (part (c)).

Figure 6.15 Understanding the flux in terms of field lines. (a) The electric flux through a closed surface due to a charge outside that

surface is zero. (b) Charges are enclosed, but because the net charge included is zero, the net flux through the closed surface is also zero.

(c) The shape and size of the surfaces that enclose a charge does not matter because all surfaces enclosing the same charge have the same

flux.

Statement of Gauss’s Law
Gauss’s law generalizes this result to the case of any number of charges and any location of the charges in the
space inside the closed surface. According to Gauss’s law, the flux of the electric field through any closed
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surface, also called a Gaussian surface, is equal to the net charge enclosed divided by the permittivity of
free space :

This equation holds for charges of either sign, because we define the area vector of a closed surface to point
outward. If the enclosed charge is negative (see Figure 6.16(b)), then the flux through either is negative.

Figure 6.16 The electric flux through any closed surface surrounding a point charge q is given by Gauss’s law. (a) Enclosed charge is

positive. (b) Enclosed charge is negative.

The Gaussian surface does not need to correspond to a real, physical object; indeed, it rarely will. It is a
mathematical construct that may be of any shape, provided that it is closed. However, since our goal is to
integrate the flux over it, we tend to choose shapes that are highly symmetrical.

If the charges are discrete point charges, then we just add them. If the charge is described by a continuous
distribution, then we need to integrate appropriately to find the total charge that resides inside the enclosed
volume. For example, the flux through the Gaussian surface S of Figure 6.17 is Note
that is simply the sum of the point charges. If the charge distribution were continuous, we would need to
integrate appropriately to compute the total charge within the Gaussian surface.

Figure 6.17 The flux through the Gaussian surface shown, due to the charge distribution, is

Recall that the principle of superposition holds for the electric field. Therefore, the total electric field at any
point, including those on the chosen Gaussian surface, is the sum of all the electric fields present at this point.
This allows us to write Gauss’s law in terms of the total electric field.
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To use Gauss’s law effectively, you must have a clear understanding of what each term in the equation
represents. The field is the total electric field at every point on the Gaussian surface. This total field includes
contributions from charges both inside and outside the Gaussian surface. However, is just the charge
inside the Gaussian surface. Finally, the Gaussian surface is any closed surface in space. That surface can
coincide with the actual surface of a conductor, or it can be an imaginary geometric surface. The only
requirement imposed on a Gaussian surface is that it be closed (Figure 6.18).

Figure 6.18 A Klein bottle partially filled with a liquid. Could the Klein bottle be used as a Gaussian surface?

EXAMPLE 6.5

Electric Flux through Gaussian Surfaces
Calculate the electric flux through each Gaussian surface shown in Figure 6.19.

Gauss’s Law

The flux of the electric field through any closed surface S (a Gaussian surface) is equal to the net
charge enclosed divided by the permittivity of free space

6.5
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Figure 6.19 Various Gaussian surfaces and charges.

Strategy
From Gauss’s law, the flux through each surface is given by where is the charge enclosed by that
surface.

Solution
For the surfaces and charges shown, we find

a.

b.

c.

d.

e.

Significance
In the special case of a closed surface, the flux calculations become a sum of charges. In the next section, this
will allow us to work with more complex systems.

CHECK YOUR UNDERSTANDING 6.3

Calculate the electric flux through the closed cubical surface for each charge distribution shown in Figure 6.20.
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Figure 6.20 A cubical Gaussian surface with various charge distributions.

INTERACTIVE

Use this simulation (https://openstax.org/l/21gaussimulat) to adjust the magnitude of the charge and the
radius of the Gaussian surface around it. See how this affects the total flux and the magnitude of the electric
field at the Gaussian surface.

6.3 Applying Gauss’s Law
Learning Objectives
By the end of this section, you will be able to:

• Explain what spherical, cylindrical, and planar symmetry are
• Recognize whether or not a given system possesses one of these symmetries
• Apply Gauss’s law to determine the electric field of a system with one of these symmetries

Gauss’s law is very helpful in determining expressions for the electric field, even though the law is not directly
about the electric field; it is about the electric flux. It turns out that in situations that have certain symmetries
(spherical, cylindrical, or planar) in the charge distribution, we can deduce the electric field based on
knowledge of the electric flux. In these systems, we can find a Gaussian surface S over which the electric field
has constant magnitude. Furthermore, if is parallel to everywhere on the surface, then (If
and are antiparallel everywhere on the surface, then ) Gauss’s law then simplifies to
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where A is the area of the surface. Note that these symmetries lead to the transformation of the flux integral
into a product of the magnitude of the electric field and an appropriate area. When you use this flux in the
expression for Gauss’s law, you obtain an algebraic equation that you can solve for the magnitude of the
electric field, which looks like

The direction of the electric field at point P is obtained from the symmetry of the charge distribution and the
type of charge in the distribution. Therefore, Gauss’s law can be used to determine Here is a summary of
the steps we will follow:

PROBLEM-SOLVING STRATEGY

Gauss’s Law
1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows us to

choose the appropriate Gaussian surface. As examples, an isolated point charge has spherical symmetry,
and an infinite line of charge has cylindrical symmetry.

2. Choose a Gaussian surface with the same symmetry as the charge distribution and identify its
consequences. With this choice, is easily determined over the Gaussian surface.

3. Evaluate the integral over the Gaussian surface, that is, calculate the flux through the surface.

The symmetry of the Gaussian surface allows us to factor outside the integral.
4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand

side of the equation representing Gauss’s law. It is often necessary to perform an integration to obtain the
net enclosed charge.

5. Evaluate the electric field of the charge distribution. The field may now be found using the results of steps
3 and 4.

Basically, there are only three types of symmetry that allow Gauss’s law to be used to deduce the electric field.
They are

• A charge distribution with spherical symmetry
• A charge distribution with cylindrical symmetry
• A charge distribution with planar symmetry

To exploit the symmetry, we perform the calculations in appropriate coordinate systems and use the right kind
of Gaussian surface for that symmetry, applying the remaining four steps.

Charge Distribution with Spherical Symmetry
A charge distribution has spherical symmetry if the density of charge depends only on the distance from a
point in space and not on the direction. In other words, if you rotate the system, it doesn’t look different. For
instance, if a sphere of radius R is uniformly charged with charge density then the distribution has
spherical symmetry (Figure 6.21(a)). On the other hand, if a sphere of radius R is charged so that the top half of
the sphere has uniform charge density and the bottom half has a uniform charge density then the
sphere does not have spherical symmetry because the charge density depends on the direction (Figure
6.21(b)). Thus, it is not the shape of the object but rather the shape of the charge distribution that determines
whether or not a system has spherical symmetry.

Figure 6.21(c) shows a sphere with four different shells, each with its own uniform charge density. Although
this is a situation where charge density in the full sphere is not uniform, the charge density function depends

6.6

246 6 • Gauss's Law

Access for free at openstax.org.



only on the distance from the center and not on the direction. Therefore, this charge distribution does have
spherical symmetry.

Figure 6.21 Illustrations of spherically symmetrical and nonsymmetrical systems. Different shadings indicate different charge densities.

Charges on spherically shaped objects do not necessarily mean the charges are distributed with spherical symmetry. The spherical

symmetry occurs only when the charge density does not depend on the direction. In (a), charges are distributed uniformly in a sphere. In

(b), the upper half of the sphere has a different charge density from the lower half; therefore, (b) does not have spherical symmetry. In (c),

the charges are in spherical shells of different charge densities, which means that charge density is only a function of the radial distance

from the center; therefore, the system has spherical symmetry.

One good way to determine whether or not your problem has spherical symmetry is to look at the charge
density function in spherical coordinates, . If the charge density is only a function of r, that is

, then you have spherical symmetry. If the density depends on or , you could change it by rotation;
hence, you would not have spherical symmetry.

Consequences of symmetry
In all spherically symmetrical cases, the electric field at any point must be radially directed, because the
charge and, hence, the field must be invariant under rotation. Therefore, using spherical coordinates with their
origins at the center of the spherical charge distribution, we can write down the expected form of the electric
field at a point P located at a distance r from the center:

where is the unit vector pointed in the direction from the origin to the field point P. The radial component
of the electric field can be positive or negative. When the electric field at P points away from the

origin, and when the electric field at P points toward the origin.

Gaussian surface and flux calculations
We can now use this form of the electric field to obtain the flux of the electric field through the Gaussian
surface. For spherical symmetry, the Gaussian surface is a closed spherical surface that has the same center as
the center of the charge distribution. Thus, the direction of the area vector of an area element on the Gaussian
surface at any point is parallel to the direction of the electric field at that point, since they are both radially
directed outward (Figure 6.22).

6.7
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Figure 6.22 The electric field at any point of the spherical Gaussian surface for a spherically symmetrical charge distribution is parallel to

the area element vector at that point, giving flux as the product of the magnitude of electric field and the value of the area. Note that the

radius R of the charge distribution and the radius r of the Gaussian surface are different quantities.

The magnitude of the electric field must be the same everywhere on a spherical Gaussian surface
concentric with the distribution. For a spherical surface of radius r,

Using Gauss’s law
According to Gauss’s law, the flux through a closed surface is equal to the total charge enclosed within the
closed surface divided by the permittivity of vacuum . Let be the total charge enclosed inside the
distance r from the origin, which is the space inside the Gaussian spherical surface of radius r. This gives the
following relation for Gauss’s law:

Hence, the electric field at point P that is a distance r from the center of a spherically symmetrical charge
distribution has the following magnitude and direction:

Direction: radial from O to P or from P to O.

The direction of the field at point P depends on whether the charge in the sphere is positive or negative. For a
net positive charge enclosed within the Gaussian surface, the direction is from O to P, and for a net negative
charge, the direction is from P to O. This is all we need for a point charge, and you will notice that the result
above is identical to that for a point charge. However, Gauss’s law becomes truly useful in cases where the
charge occupies a finite volume.

Computing enclosed charge
The more interesting case is when a spherical charge distribution occupies a volume, and asking what the
electric field inside the charge distribution is thus becomes relevant. In this case, the charge enclosed depends
on the distance r of the field point relative to the radius of the charge distribution R, such as that shown in
Figure 6.23.

6.8
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Figure 6.23 A spherically symmetrical charge distribution and the Gaussian surface used for finding the field (a) inside and (b) outside the

distribution.

If point P is located outside the charge distribution—that is, if —then the Gaussian surface containing P
encloses all charges in the sphere. In this case, equals the total charge in the sphere. On the other hand, if
point P is within the spherical charge distribution, that is, if then the Gaussian surface encloses a
smaller sphere than the sphere of charge distribution. In this case, is less than the total charge present in
the sphere. Referring to Figure 6.23, we can write as

The field at a point outside the charge distribution is also called , and the field at a point inside the charge
distribution is called Focusing on the two types of field points, either inside or outside the charge
distribution, we can now write the magnitude of the electric field as

Note that the electric field outside a spherically symmetrical charge distribution is identical to that of a point
charge at the center that has a charge equal to the total charge of the spherical charge distribution. This is
remarkable since the charges are not located at the center only. We now work out specific examples of
spherical charge distributions, starting with the case of a uniformly charged sphere.

EXAMPLE 6.6

Uniformly Charged Sphere
A sphere of radius R, such as that shown in Figure 6.23, has a uniform volume charge density . Find the
electric field at a point outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law problem-solving strategy, where we have already worked out the flux calculation.

Solution
The charge enclosed by the Gaussian surface is given by

6.9

6.10
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The answer for electric field amplitude can then be written down immediately for a point outside the sphere,
labeled and a point inside the sphere, labeled

It is interesting to note that the magnitude of the electric field increases inside the material as you go out, since
the amount of charge enclosed by the Gaussian surface increases with the volume. Specifically, the charge
enclosed grows , whereas the field from each infinitesimal element of charge drops off with the net
result that the electric field within the distribution increases in strength linearly with the radius. The
magnitude of the electric field outside the sphere decreases as you go away from the charges, because the
included charge remains the same but the distance increases. Figure 6.24 displays the variation of the
magnitude of the electric field with distance from the center of a uniformly charged sphere.

Figure 6.24 Electric field of a uniformly charged, non-conducting sphere increases inside the sphere to a maximum at the surface and

then decreases as . Here, . The electric field is due to a spherical charge distribution of uniform charge density and total

charge Q as a function of distance from the center of the distribution.

The direction of the electric field at any point P is radially outward from the origin if is positive, and inward
(i.e., toward the center) if is negative. The electric field at some representative space points are displayed in
Figure 6.25 whose radial coordinates r are , , and .
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Figure 6.25 Electric field vectors inside and outside a uniformly charged sphere.

Significance
Notice that has the same form as the equation of the electric field of an isolated point charge. In
determining the electric field of a uniform spherical charge distribution, we can therefore assume that all of
the charge inside the appropriate spherical Gaussian surface is located at the center of the distribution.

EXAMPLE 6.7

Non-Uniformly Charged Sphere
A non-conducting sphere of radius R has a non-uniform charge density that varies with the distance from its
center as given by

where a is a constant. We require so that the charge density is not undefined at . Find the electric
field at a point outside the sphere and at a point inside the sphere.

Strategy
Apply the Gauss’s law strategy given above, where we work out the enclosed charge integrals separately for
cases inside and outside the sphere.

Solution
Since the given charge density function has only a radial dependence and no dependence on direction, we
have a spherically symmetrical situation. Therefore, the magnitude of the electric field at any point is given
above and the direction is radial. We just need to find the enclosed charge which depends on the location
of the field point.

A note about symbols: We use for locating charges in the charge distribution and r for locating the field
point(s) at the Gaussian surface(s). The letter R is used for the radius of the charge distribution.
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As charge density is not constant here, we need to integrate the charge density function over the volume
enclosed by the Gaussian surface. Therefore, we set up the problem for charges in one spherical shell, say
between and as shown in Figure 6.26. The volume of charges in the shell of infinitesimal width is
equal to the product of the area of surface and the thickness . Multiplying the volume with the density
at this location, which is , gives the charge in the shell:

Figure 6.26 Spherical symmetry with non-uniform charge distribution. In this type of problem, we need four radii: R is the radius of the

charge distribution, r is the radius of the Gaussian surface, is the inner radius of the spherical shell, and is the outer radius of the

spherical shell. The spherical shell is used to calculate the charge enclosed within the Gaussian surface. The range for is from 0 to r for

the field at a point inside the charge distribution and from 0 to R for the field at a point outside the charge distribution. If , then the

Gaussian surface encloses more volume than the charge distribution, but the additional volume does not contribute to .

(a) Field at a point outside the charge distribution. In this case, the Gaussian surface, which contains the field
point P, has a radius r that is greater than the radius R of the charge distribution, . Therefore, all charges
of the charge distribution are enclosed within the Gaussian surface. Note that the space between and

is empty of charges and therefore does not contribute to the integral over the volume enclosed by the
Gaussian surface:

This is used in the general result for above to obtain the electric field at a point outside the charge
distribution as

where is a unit vector in the direction from the origin to the field point at the Gaussian surface.

(b) Field at a point inside the charge distribution. The Gaussian surface is now buried inside the charge
distribution, with . Therefore, only those charges in the distribution that are within a distance r of the
center of the spherical charge distribution count in :
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Now, using the general result above for we find the electric field at a point that is a distance r from the
center and lies within the charge distribution as

where the direction information is included by using the unit radial vector.

CHECK YOUR UNDERSTANDING 6.4

Check that the electric fields for the sphere reduce to the correct values for a point charge.

Charge Distribution with Cylindrical Symmetry
A charge distribution has cylindrical symmetry if the charge density depends only upon the distance r from
the axis of a cylinder and must not vary along the axis or with direction about the axis. In other words, if your
system varies if you rotate it around the axis, or shift it along the axis, you do not have cylindrical symmetry.

Figure 6.27 shows four situations in which charges are distributed in a cylinder. A uniform charge density
in an infinite straight wire has a cylindrical symmetry, and so does an infinitely long cylinder with constant
charge density An infinitely long cylinder that has different charge densities along its length, such as a
charge density for and for , does not have a usable cylindrical symmetry for this course.
Neither does a cylinder in which charge density varies with the direction, such as a charge density for

and for . A system with concentric cylindrical shells, each with uniform charge
densities, albeit different in different shells, as in Figure 6.27(d), does have cylindrical symmetry if they are
infinitely long. The infinite length requirement is due to the charge density changing along the axis of a finite
cylinder. In real systems, we don’t have infinite cylinders; however, if the cylindrical object is considerably
longer than the radius from it that we are interested in, then the approximation of an infinite cylinder becomes
useful.

Figure 6.27 To determine whether a given charge distribution has cylindrical symmetry, look at the cross-section of an “infinitely long”

cylinder. If the charge density does not depend on the polar angle of the cross-section or along the axis, then you have cylindrical

symmetry. (a) Charge density is constant in the cylinder; (b) upper half of the cylinder has a different charge density from the lower half; (c)

left half of the cylinder has a different charge density from the right half; (d) charges are constant in different cylindrical rings, but the

density does not depend on the polar angle. Cases (a) and (d) have cylindrical symmetry, whereas (b) and (c) do not.

Consequences of symmetry
In all cylindrically symmetrical cases, the electric field at any point P must also display cylindrical
symmetry.

Cylindrical symmetry: ,
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where r is the distance from the axis and is a unit vector directed perpendicularly away from the axis (Figure
6.28).

Figure 6.28 The electric field in a cylindrically symmetrical situation depends only on the distance from the axis. The direction of the

electric field is pointed away from the axis for positive charges and toward the axis for negative charges.

Gaussian surface and flux calculation
To make use of the direction and functional dependence of the electric field, we choose a closed Gaussian
surface in the shape of a cylinder with the same axis as the axis of the charge distribution. The flux through
this surface of radius s and height L is easy to compute if we divide our task into two parts: (a) a flux through
the flat ends and (b) a flux through the curved surface (Figure 6.29).

Figure 6.29 The Gaussian surface in the case of cylindrical symmetry. The electric field at a patch is either parallel or perpendicular to the

normal to the patch of the Gaussian surface.

The electric field is perpendicular to the cylindrical side and parallel to the planar end caps of the surface. The
flux through the cylindrical part is

whereas the flux through the end caps is zero because there. Thus, the flux is

Using Gauss’s law
According to Gauss’s law, the flux must equal the amount of charge within the volume enclosed by this surface,
divided by the permittivity of free space. When you do the calculation for a cylinder of length L, you find that

of Gauss’s law is directly proportional to L. Let us write it as charge per unit length times length L:

Hence, Gauss’s law for any cylindrically symmetrical charge distribution yields the following magnitude of the
electric field a distance s away from the axis:
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The charge per unit length depends on whether the field point is inside or outside the cylinder of charge
distribution, just as we have seen for the spherical distribution.

Computing enclosed charge
Let R be the radius of the cylinder within which charges are distributed in a cylindrically symmetrical way. Let
the field point P be at a distance s from the axis. (The side of the Gaussian surface includes the field point P.)
When (that is, when P is outside the charge distribution), the Gaussian surface includes all the charge in
the cylinder of radius R and length L. When (P is located inside the charge distribution), then only the
charge within a cylinder of radius s and length L is enclosed by the Gaussian surface:

EXAMPLE 6.8

Uniformly Charged Cylindrical Shell
A very long non-conducting cylindrical shell of radius R has a uniform surface charge density Find the
electric field (a) at a point outside the shell and (b) at a point inside the shell.

Strategy
Apply the Gauss’s law strategy given earlier, where we treat the cases inside and outside the shell separately.

Solution

a. Electric field at a point outside the shell. For a point outside the cylindrical shell, the Gaussian surface is
the surface of a cylinder of radius and length L, as shown in Figure 6.30. The charge enclosed by the
Gaussian cylinder is equal to the charge on the cylindrical shell of length L. Therefore, is given by

Figure 6.30 A Gaussian surface surrounding a cylindrical shell.

Hence, the electric field at a point P outside the shell at a distance r away from the axis is

where is a unit vector, perpendicular to the axis and pointing away from it, as shown in the figure. The
electric field at P points in the direction of given in Figure 6.30 if and in the opposite direction to

if .
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b. Electric field at a point inside the shell. For a point inside the cylindrical shell, the Gaussian surface is a
cylinder whose radius r is less than R (Figure 6.31). This means no charges are included inside the
Gaussian surface:

Figure 6.31 A Gaussian surface within a cylindrical shell.

This gives the following equation for the magnitude of the electric field at a point whose r is less than R
of the shell of charges.

This gives us

Significance
Notice that the result inside the shell is exactly what we should expect: No enclosed charge means zero electric
field. Outside the shell, the result becomes identical to a wire with uniform charge

CHECK YOUR UNDERSTANDING 6.5

A thin straight wire has a uniform linear charge density Find the electric field at a distance d from the wire,
where d is much less than the length of the wire.

Charge Distribution with Planar Symmetry
A planar symmetry of charge density is obtained when charges are uniformly spread over a large flat surface.
In planar symmetry, all points in a plane parallel to the plane of charge are identical with respect to the
charges.

Consequences of symmetry
We take the plane of the charge distribution to be the xy-plane and we find the electric field at a space point P
with coordinates (x, y, z). Since the charge density is the same at all (x, y)-coordinates in the plane, by
symmetry, the electric field at P cannot depend on the x- or y-coordinates of point P, as shown in Figure 6.32.
Therefore, the electric field at P can only depend on the distance from the plane and has a direction either
toward the plane or away from the plane. That is, the electric field at P has only a nonzero z-component.

Uniform charges in xy plane:

where z is the distance from the plane and is the unit vector normal to the plane. Note that in this system,
although of course they point in opposite directions.
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Figure 6.32 The components of the electric field parallel to a plane of charges cancel out the two charges located symmetrically from the

field point P. Therefore, the field at any point is pointed vertically from the plane of charges. For any point P and charge we can always

find a with this effect.

Gaussian surface and flux calculation
In the present case, a convenient Gaussian surface is a box, since the expected electric field points in one
direction only. To keep the Gaussian box symmetrical about the plane of charges, we take it to straddle the
plane of the charges, such that one face containing the field point P is taken parallel to the plane of the charges.
In Figure 6.33, sides I and II of the Gaussian surface (the box) that are parallel to the infinite plane have been
shaded. They are the only surfaces that give rise to nonzero flux because the electric field and the area vectors
of the other faces are perpendicular to each other.

Figure 6.33 A thin charged sheet and the Gaussian box for finding the electric field at the field point P. The normal to each face of the box

is from inside the box to outside. On two faces of the box, the electric fields are parallel to the area vectors, and on the other four faces, the

electric fields are perpendicular to the area vectors.

Let A be the area of the shaded surface on each side of the plane and be the magnitude of the electric field
at point P. Since sides I and II are at the same distance from the plane, the electric field has the same
magnitude at points in these planes, although the directions of the electric field at these points in the two
planes are opposite to each other.

Magnitude at I or II:

If the charge on the plane is positive, then the direction of the electric field and the area vectors are as shown in
Figure 6.33. Therefore, we find for the flux of electric field through the box

where the zeros are for the flux through the other sides of the box. Note that if the charge on the plane is
negative, the directions of electric field and area vectors for planes I and II are opposite to each other, and we
get a negative sign for the flux. According to Gauss’s law, the flux must equal . From Figure 6.33, we see
that the charges inside the volume enclosed by the Gaussian box reside on an area A of the xy-plane. Hence,

6.11
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Using the equations for the flux and enclosed charge in Gauss’s law, we can immediately determine the electric
field at a point at height z from a uniformly charged plane in the xy-plane:

The direction of the field depends on the sign of the charge on the plane and the side of the plane where the
field point P is located. Note that above the plane, , while below the plane, .

You may be surprised to note that the electric field does not actually depend on the distance from the plane;
this is an effect of the assumption that the plane is infinite. In practical terms, the result given above is still a
useful approximation for finite planes near the center.

6.4 Conductors in Electrostatic Equilibrium
Learning Objectives
By the end of this section, you will be able to:

• Describe the electric field within a conductor at equilibrium
• Describe the electric field immediately outside the surface of a charged conductor at equilibrium
• Explain why if the field is not as described in the first two objectives, the conductor is not at equilibrium

So far, we have generally been working with charges occupying a volume within an insulator. We now study
what happens when free charges are placed on a conductor. Generally, in the presence of a (generally external)
electric field, the free charge in a conductor redistributes and very quickly reaches electrostatic equilibrium.
The resulting charge distribution and its electric field have many interesting properties, which we can
investigate with the help of Gauss’s law and the concept of electric potential.

The Electric Field inside a Conductor Vanishes
If an electric field is present inside a conductor, it exerts forces on the free electrons (also called conduction
electrons), which are electrons in the material that are not bound to an atom. These free electrons then
accelerate. However, moving charges by definition means nonstatic conditions, contrary to our assumption.
Therefore, when electrostatic equilibrium is reached, the charge is distributed in such a way that the electric
field inside the conductor vanishes.

If you place a piece of a metal near a positive charge, the free electrons in the metal are attracted to the
external positive charge and migrate freely toward that region. The region the electrons move to then has an
excess of electrons over the protons in the atoms and the region from where the electrons have migrated has
more protons than electrons. Consequently, the metal develops a negative region near the charge and a
positive region at the far end (Figure 6.34). As we saw in the preceding chapter, this separation of equal
magnitude and opposite type of electric charge is called polarization. If you remove the external charge, the
electrons migrate back and neutralize the positive region.

Figure 6.34 Polarization of a metallic sphere by an external point charge . The near side of the metal has an opposite surface charge

compared to the far side of the metal. The sphere is said to be polarized. When you remove the external charge, the polarization of the

metal also disappears.

The polarization of the metal happens only in the presence of external charges. You can think of this in terms
of electric fields. The external charge creates an external electric field. When the metal is placed in the region
of this electric field, the electrons and protons of the metal experience electric forces due to this external
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electric field, but only the conduction electrons are free to move in the metal over macroscopic distances. The
movement of the conduction electrons leads to the polarization, which creates an induced electric field in
addition to the external electric field (Figure 6.35). The net electric field is a vector sum of the fields of and
the surface charge densities and This means that the net field inside the conductor is different from
the field outside the conductor.

Figure 6.35 In the presence of an external charge q, the charges in a metal redistribute. The electric field at any point has three

contributions, from and the induced charges and Note that the surface charge distribution will not be uniform in this case.

The redistribution of charges is such that the sum of the three contributions at any point P inside the
conductor is

Now, thanks to Gauss’s law, we know that there is no net charge enclosed by a Gaussian surface that is solely
within the volume of the conductor at equilibrium. That is, and hence

Charge on a Conductor
An interesting property of a conductor in static equilibrium is that extra charges on the conductor end up on
the outer surface of the conductor, regardless of where they originate. Figure 6.36 illustrates a system in which
we bring an external positive charge inside the cavity of a metal and then touch it to the inside surface.
Initially, the inside surface of the cavity is negatively charged and the outside surface of the conductor is
positively charged. When we touch the inside surface of the cavity, the induced charge is neutralized, leaving
the outside surface and the whole metal charged with a net positive charge.

Figure 6.36 Electric charges on a conductor migrate to the outside surface no matter where you put them initially.

To see why this happens, note that the Gaussian surface in Figure 6.37 (the dashed line) follows the contour of
the actual surface of the conductor and is located an infinitesimal distance within it. Since everywhere
inside a conductor,

Thus, from Gauss’s law, there is no net charge inside the Gaussian surface. But the Gaussian surface lies just

6.13
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below the actual surface of the conductor; consequently, there is no net charge inside the conductor. Any
excess charge must lie on its surface.

Figure 6.37 The dashed line represents a Gaussian surface that is just beneath the actual surface of the conductor.

This particular property of conductors is the basis for an extremely accurate method developed by Plimpton
and Lawton in 1936 to verify Gauss’s law and, correspondingly, Coulomb’s law. A sketch of their apparatus is
shown in Figure 6.38. Two spherical shells are connected to one another through an electrometer E, a device
that can detect a very slight amount of charge flowing from one shell to the other. When switch S is thrown to
the left, charge is placed on the outer shell by the battery B. Will charge flow through the electrometer to the
inner shell?

No. Doing so would mean a violation of Gauss’s law. Plimpton and Lawton did not detect any flow and, knowing
the sensitivity of their electrometer, concluded that if the radial dependence in Coulomb’s law were ,
would be less than 1 . More recent measurements place at less than 2 , a number so small
that the validity of Coulomb’s law seems indisputable.

Figure 6.38 A representation of the apparatus used by Plimpton and Lawton. Any transfer of charge between the spheres is detected by

1 S. Plimpton and W. Lawton. 1936. “A Very Accurate Test of Coulomb’s Law of Force between Charges.” Physical Review 50, No. 11:

1066, doi:10.1103/PhysRev.50.1066

2 E. Williams, J. Faller, and H. Hill. 1971. “New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest

Mass.” Physical Review Letters 26 , No. 12: 721, doi:10.1103/PhysRevLett.26.721

260 6 • Gauss's Law

Access for free at openstax.org.



the electrometer E.

The Electric Field at the Surface of a Conductor
If the electric field had a component parallel to the surface of a conductor, free charges on the surface would
move, a situation contrary to the assumption of electrostatic equilibrium. Therefore, the electric field is always
perpendicular to the surface of a conductor.

At any point just above the surface of a conductor, the surface charge density and the magnitude of the
electric field E are related by

To see this, consider an infinitesimally small Gaussian cylinder that surrounds a point on the surface of the
conductor, as in Figure 6.39. The cylinder has one end face inside and one end face outside the surface. The
height and cross-sectional area of the cylinder are and , respectively. The cylinder’s sides are
perpendicular to the surface of the conductor, and its end faces are parallel to the surface. Because the cylinder
is infinitesimally small, the charge density is essentially constant over the surface enclosed, so the total
charge inside the Gaussian cylinder is . Now E is perpendicular to the surface of the conductor outside the
conductor and vanishes within it, because otherwise, the charges would accelerate, and we would not be in
equilibrium. Electric flux therefore crosses only the outer end face of the Gaussian surface and may be written
as , since the cylinder is assumed to be small enough that E is approximately constant over that area.
From Gauss’ law,

Thus,

Figure 6.39 An infinitesimally small cylindrical Gaussian surface surrounds point P, which is on the surface of the conductor. The field is

perpendicular to the surface of the conductor outside the conductor and vanishes within it.

EXAMPLE 6.9

Electric Field of a Conducting Plate
The infinite conducting plate in Figure 6.40 has a uniform surface charge density . Use Gauss’ law to find the
electric field outside the plate. Compare this result with that previously calculated directly.

6.14
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Figure 6.40 A side view of an infinite conducting plate and Gaussian cylinder with cross-sectional area A.

Strategy
For this case, we use a cylindrical Gaussian surface, a side view of which is shown.

Solution
The flux calculation is similar to that for an infinite sheet of charge from the previous chapter with one major
exception: The left face of the Gaussian surface is inside the conductor where so the total flux through
the Gaussian surface is EA rather than 2EA. Then from Gauss’ law,

and the electric field outside the plate is

Significance
This result is in agreement with the result from the previous section, and consistent with the rule stated above.

EXAMPLE 6.10

Electric Field between Oppositely Charged Parallel Plates
Two large conducting plates carry equal and opposite charges, with a surface charge density of magnitude

as shown in Figure 6.41. The separation between the plates is . What is the
electric field between the plates?
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Figure 6.41 The electric field between oppositely charged parallel plates. A test charge is released at the positive plate.

Strategy
Note that the electric field at the surface of one plate only depends on the charge on that plate. Thus, apply

with the given values.

Solution
The electric field is directed from the positive to the negative plate, as shown in the figure, and its magnitude is
given by

Significance
This formula is applicable to more than just a plate. Furthermore, two-plate systems will be important later.

EXAMPLE 6.11

A Conducting Sphere
The isolated conducting sphere (Figure 6.42) has a radius R and an excess charge q. What is the electric field
both inside and outside the sphere?
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Figure 6.42 An isolated conducting sphere.

Strategy
The sphere is isolated, so its surface change distribution and the electric field of that distribution are
spherically symmetrical. We can therefore represent the field as . To calculate E(r), we apply
Gauss’s law over a closed spherical surface S of radius r that is concentric with the conducting sphere.

Solution
Since r is constant and on the sphere,

For , S is within the conductor, so and Gauss’s law gives

as expected inside a conductor. If , S encloses the conductor so From Gauss’s law,

The electric field of the sphere may therefore be written as

Significance
Notice that in the region , the electric field due to a charge q placed on an isolated conducting sphere of
radius R is identical to the electric field of a point charge q located at the center of the sphere. The difference
between the charged metal and a point charge occurs only at the space points inside the conductor. For a point
charge placed at the center of the sphere, the electric field is not zero at points of space occupied by the sphere,
but a conductor with the same amount of charge has a zero electric field at those points (Figure 6.43). However,
there is no distinction at the outside points in space where , and we can replace the isolated charged
spherical conductor by a point charge at its center with impunity.
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Figure 6.43 Electric field of a positively charged metal sphere. The electric field inside is zero, and the electric field outside is same as the

electric field of a point charge at the center, although the charge on the metal sphere is at the surface.

CHECK YOUR UNDERSTANDING 6.6

How will the system above change if there are charged objects external to the sphere?

For a conductor with a cavity, if we put a charge inside the cavity, then the charge separation takes place in
the conductor, with amount of charge on the inside surface and a amount of charge at the outside
surface (Figure 6.44(a)). For the same conductor with a charge outside it, there is no excess charge on the
inside surface; both the positive and negative induced charges reside on the outside surface (Figure 6.44(b)).

Figure 6.44 (a) A charge inside a cavity in a metal. The distribution of charges at the outer surface does not depend on how the charges

are distributed at the inner surface, since the E-field inside the body of the metal is zero. That magnitude of the charge on the outer surface

does depend on the magnitude of the charge inside, however. (b) A charge outside a conductor containing an inner cavity. The cavity

remains free of charge. The polarization of charges on the conductor happens at the surface.

If a conductor has two cavities, one of them having a charge inside it and the other a charge the
polarization of the conductor results in on the inside surface of the cavity a, on the inside surface of
the cavity b, and on the outside surface (Figure 6.45). The charges on the surfaces may not be
uniformly spread out; their spread depends upon the geometry. The only rule obeyed is that when the
equilibrium has been reached, the charge distribution in a conductor is such that the electric field by the
charge distribution in the conductor cancels the electric field of the external charges at all space points inside
the body of the conductor.
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Figure 6.45 The charges induced by two equal and opposite charges in two separate cavities of a conductor. If the net charge on the

cavity is nonzero, the external surface becomes charged to the amount of the net charge.
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CHAPTER REVIEW
Key Terms
area vector vector with magnitude equal to the

area of a surface and direction perpendicular to
the surface

cylindrical symmetry system only varies with
distance from the axis, not direction

electric flux dot product of the electric field and
the area through which it is passing

flux quantity of something passing through a given
area

free electrons also called conduction electrons,

these are the electrons in a conductor that are not
bound to any particular atom, and hence are free
to move around

Gaussian surface any enclosed (usually
imaginary) surface

planar symmetry system only varies with distance
from a plane

spherical symmetry system only varies with the
distance from the origin, not in direction

Key Equations

Definition of electric flux, for uniform electric field

Electric flux through an open surface

Electric flux through a closed surface

Gauss’s law

Gauss’s Law for systems with symmetry

The magnitude of the electric field just outside the surface
of a conductor

Summary
6.1 Electric Flux

• The electric flux through a surface is
proportional to the number of field lines
crossing that surface. Note that this means the
magnitude is proportional to the portion of the
field perpendicular to the area.

• The electric flux is obtained by evaluating the
surface integral

where the notation used here is for a closed
surface S.

6.2 Explaining Gauss’s Law

• Gauss’s law relates the electric flux through a
closed surface to the net charge within that

surface,

where is the total charge inside the
Gaussian surface S.

• All surfaces that include the same amount of
charge have the same number of field lines
crossing it, regardless of the shape or size of the
surface, as long as the surfaces enclose the
same amount of charge.

6.3 Applying Gauss’s Law

• For a charge distribution with certain spatial
symmetries (spherical, cylindrical, and planar),
we can find a Gaussian surface over which

, where E is constant over the surface.
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The electric field is then determined with
Gauss’s law.

• For spherical symmetry, the Gaussian surface is
also a sphere, and Gauss’s law simplifies to

.

• For cylindrical symmetry, we use a cylindrical
Gaussian surface, and find that Gauss’s law
simplifies to .

• For planar symmetry, a convenient Gaussian
surface is a box penetrating the plane, with two
faces parallel to the plane and the remainder

perpendicular, resulting in Gauss’s law being
.

6.4 Conductors in Electrostatic Equilibrium

• The electric field inside a conductor vanishes.
• Any excess charge placed on a conductor

resides entirely on the surface of the conductor.
• The electric field is perpendicular to the surface

of a conductor everywhere on that surface.
• The magnitude of the electric field just above

the surface of a conductor is given by .

Conceptual Questions
6.1 Electric Flux

1. Discuss how to orient a planar surface of area A
in a uniform electric field of magnitude to
obtain (a) the maximum flux and (b) the
minimum flux through the area.

2. What are the maximum and minimum values of
the flux in the preceding question?

3. The net electric flux crossing a closed surface is
always zero. True or false?

4. The net electric flux crossing an open surface is
never zero. True or false?

6.2 Explaining Gauss’s Law

5. Two concentric spherical surfaces enclose a
point charge q. The radius of the outer sphere is
twice that of the inner one. Compare the electric
fluxes crossing the two surfaces.

6. Compare the electric flux through the surface of a
cube of side length a that has a charge q at its
center to the flux through a spherical surface of
radius a with a charge q at its center.

7. (a) If the electric flux through a closed surface is
zero, is the electric field necessarily zero at all
points on the surface? (b) What is the net charge
inside the surface?

8. Discuss how Gauss’s law would be affected if the
electric field of a point charge did not vary as

9. Discuss the similarities and differences between
the gravitational field of a point mass m and the
electric field of a point charge q.

10. Discuss whether Gauss’s law can be applied to
other forces, and if so, which ones.

11. Is the term in Gauss’s law the electric field
produced by just the charge inside the Gaussian
surface?

12. Reformulate Gauss’s law by choosing the unit

normal of the Gaussian surface to be the one
directed inward.

6.3 Applying Gauss’s Law

13. Would Gauss’s law be helpful for determining
the electric field of two equal but opposite
charges a fixed distance apart?

14. Discuss the role that symmetry plays in the
application of Gauss’s law. Give examples of
continuous charge distributions in which
Gauss’s law is useful and not useful in
determining the electric field.

15. Discuss the restrictions on the Gaussian surface
used to discuss planar symmetry. For example,
is its length important? Does the cross-section
have to be square? Must the end faces be on
opposite sides of the sheet?

6.4 Conductors in Electrostatic Equilibrium

16. Is the electric field inside a metal always zero?
17. Under electrostatic conditions, the excess

charge on a conductor resides on its surface.
Does this mean that all the conduction electrons
in a conductor are on the surface?

18. A charge q is placed in the cavity of a conductor
as shown below. Will a charge outside the
conductor experience an electric field due to the
presence of q?
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